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Abstract

For a positive definite infinite matrix A, we study the relationship be-

tween its associated sequence of orthonormal polynomials and the asymp-

totic behaviour of the smallest eigenvalue of its truncation An of size n×n.

For the particular case of A being a Hankel or a Hankel block matrix, our

results lead to a characterization of positive measures with finite index of

determinacy and of completely indeterminate matrix moment problems,

respectively.

1 Introduction

To each positive definite infinite matrix A = (an,m)n,m can be associated an
inner product defined on the linear space of polynomials P as follows: if p(t) =
∑

n αnt
n, q(t) =

∑

n βnt
n then

〈p, q〉 = (α0, α1, · · · )







a0,0 a0,1 a0,2 · · ·
a1,0 a1,1 a1,2 · · ·
...

...
...

. . .













β̄0

β̄1

...






=
∑

k,n

αnan,kβ̄k.

By definition we have that an,k are the ”moments” of this inner product, that
is, an,k = 〈tn, tk〉. We can associate to that inner product a sequence of or-
thonormal polynomials (pn)n, pn with degree n, which is unique assuming the
leading coefficients of pn to be positive; we also say that (pn)n is the sequence of
orthonormal polynomials with respect to the matrix A. In all of this paper we
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Deporte de España, SAB2000-142. The work of the second author has been partially supported
by D.G.E.S, ref. BFM2000-206-C04-02, FQM-262 (Junta de Andalućıa)
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consider the linear space P endowed with the topology generated by this inner
product.
We will consider the truncated matrices An, n ≥ 1, of size n×n of the matrix A.
Since A is positive definite, these matrices An, n ≥ 1, are also positive definite;
we can then write 0 < λ1,n ≤ λ2,n ≤ · · · ≤ λn,n, for the eigenvalues of An.
The aim of this paper is to study the relationship between the asymptotic be-
haviour of the smallest eigenvalue λ1,n, n ≥ 0, of the matrix An, n ≥ 0, and the
sequence of orthonormal polynomials (pn)n with respect to the matrix A.
In Section 2 we prove the following characterization of the boundedness below
of the smallest eigenvalues:

Theorem 1.1. The following conditions are equivalent

• There exists a constant c > 0 such that λ1,n ≥ c > 0, n ∈ N.

• The linear mapping T defined by T (tn) = pn, n ∈ N, is bounded, that is,
there exists C > 0 such that for any p ∈ P

∑

n

∣

∣

∣

∣

p(n)(0)

n!

∣

∣

∣

∣

2

≤ C〈p, p〉.

Moreover, if one of these properties holds then

lim
n
λ1,n = ‖T ‖−2.

We complete Section 2 by studying particular but important cases of Theorem
1.1:

• For Hankel matrices or, equivalently, for inner products defined by a pos-
itive measure µ on the real line –i.e. the sequence (pn)n satisfying a three
term recurrence relation–, Theorem 1.1 leads to a characterization of in-
determinate measures originally proved in [BChI].

• The boundedness of the operator T in certain subspaces of P of finite
codimension –related to the kernel of Dirac’s deltas and their derivatives at
points of the complex plane– also characterizes determinate measures with
finite index of determinacy (see [BD1], [BD2] and [BD3] for the definition
and study of the index of determinacy). We also prove that measures with
finite index of determinacy equal to k have the property that the sequence
of the (k + 2)-smallest eigenvalues (λk+2,n)n of (An)n is bounded below.
If this property characterizes measures with finite index of determinacy
remains as an open question.

The orthonormal polynomials associated to a positive definite infinite matrix
A whose sequence of smallest eigenvalues is bounded below have an important
convergence property
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Theorem 1.2. If there exists c > 0 such that λ1,n ≥ c > 0, n ∈ N, then
(pn(z))n ∈ ℓ2 for |z| < 1 and moreover

∞
∑

n=0

|pn(z)|2 ≤ 1

c

1

1 − |z| for |z| < 1.

In the case when
∑∞

n=0 |pn(z)|2 has an L1-extension to T = {z ∈ C : |z| = 1},
the converse of Theorem 1.2 is also true:

Theorem 1.3. If (pn(z))n ∈ ℓ2 for almost all z in T and

f
(

eiθ
)

=

∞
∑

n=0

|pn(eiθ)|2 ∈ L1(T)

then there exists c > 0 such that λ1,n ≥ c > 0, n ∈ N.

As a consequence of Theorems 1.2 and 1.3 we find a characterization of complete
indeterminacy for matrix weights: the smallest eigenvalue of the truncations of
the corresponding Hankel block matrix is bounded below.
Using Theorem 1.2, we finally associate to each positive definite infinite matrix
A, whose sequence of smallest eigenvalues is bounded below, a linear mapping
from ℓ2 to the Bergman space Ap(D), 0 < p < 2, of analytic functions in D.

2 Smallest eigenvalues of positive definite ma-

trices

We start this Section by proving Theorem 1.1:

Proof. As in the Introduction we write λ1,n for the smallest eigenvalue of the
truncation An of size n×n of the positive definite infinite matrix A = (an,m)n,m.
We now consider the linear application T : P → P defined by tn → pn, where
(pn)n is the sequence of orthonormal polynomials with respect to the inner
product 〈tn, tm〉 = an,m. The norm ‖T ‖ is then the supremum of the norms
‖Tn‖ of the restrictions Tn : Pn → Pn, where as usual we write Pn for the linear
space of polynomials of degree less than or equal to n.
We then have:

‖Tn‖2 = sup {〈Tp, T p〉 : 〈p, p〉 = 1, p ∈ Pn}
= sup

{ 〈Tp, T p〉
〈p, p〉 : p 6= 0, p ∈ Pn

}

;

if p =
∑n

i=0 ait
i we write x = (a0, · · · , an) ∈ Cn+1 and then since 〈tk, tm〉 = ak,m
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we have

1

‖Tn‖2
= inf

{ 〈p, p〉
〈Tp, T p〉 : p 6= 0, p ∈ Pn

}

= inf

{

xAn+1x
∗

xx∗
: x 6= 0, x ∈ C

n+1

}

= inf
{

xAn+1x
∗ : xx∗ = 1, x ∈ C

n+1
}

= λ1,n+1.

Now it is easy to finish the proof.

We now study some important cases of this theorem.

Remark 2.1. Assume that A = (an,m)n,m is a Hankel matrix: i.e. there exists
a sequence (sn)n such that an,m = sn+m.

The sequence (sn)n is then the sequence of moments of a positive measure µ on
the real line, and the orthonormal polynomials (pn)n associated to A are the
orthonormal polynomials with respect to µ. From Th. 1.1 of [BChI], we know
that the boundedness below of the smallest eigenvalues (λ1,n)n is equivalent to
the indeterminacy of the measure µ. Therefore, the boundedness of the operator
T gives another characterization of indeterminate measures.

Remark 2.2. Determinate measures with finite index of determinacy can also
be characterized in terms of the boundedness of the operator T in certain sub-
spaces of P of finite codimension.

The index of determinacy of a determinate measure µ was introduced and stud-
ied by the authors in [BD1]. This index checks the determinacy under multi-
plication by even powers of |t − z| for z a complex number, and it is defined
by

ind z(µ) = sup{k ∈ N : |t− z|2kµ is determinate}.
Using the index of determinacy, determinate measures can be classified as fol-
lows:
If µ is constructed from an N-extremal measure ν –i.e. ν is indeterminate and
the linear space of polynomials is dense in L2(ν)– by removing the mass at k+1
points in the support of ν, then µ is determinate with

(2.1) ind z(µ) =

{

k, for z 6∈ supp (µ),
k + 1, for z ∈ supp (µ).

For an arbitrary determinate measure µ the index of determinacy is either infi-
nite for every z, or finite for every z. In the latter case the index has the form
(2.1), and µ is derived from an N-extremal measures by removing the mass at
k + 1 points.
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Using that the index of determinacy is constant at complex numbers outside of
the support of µ, we define the index of determinacy of µ by

ind (µ) := ind z(µ), z 6∈ supp (µ).

We are now ready to prove that finite index of determinacy can be characterized
in terms of the boundedness of the operator T in subspaces of P of finite codi-
mension related to the kernel of Dirac’s deltas and their derivatives at points of
the complex plane.

Theorem 2.3. Let µ be a positive measure with ind (µ) = N and consider
complex numbers z1, · · · , zm and nonnegative integers k1, · · · , km, such that
∑

l:µ({zl})>0 kl +
∑

l:µ({zl})=0(kl + 1) ≥ N + 1. We write R for the polynomial

R(t) =
∏m
l=1(t− zl)

kl+1. Then the operator T is bounded in the subspace

X = {p(z) = R(z)q(z) : q ∈ P} =
m
⋂

l=1

kl
⋂

i=0

ker
(

δ(i)zl

)

.

Proof. For p = Rq ∈ X using Leibniz’s rule we get:

p(k)(t) =

k
∑

i=0

(

k

i

)

R(k−i)(t)q(i)(t).

Putting M =
∑m
l=1(kl + 1), since the degree of R is just M , we have that

p(k)(t) =

k
∑

i=max{0,k−M}

(

k

i

)

R(k−i)(t)q(i)(t).

This gives
(2.2)
∣

∣

∣

∣

p(k)(0)

k!

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∣

k
∑

i=max{0,k−M}

R(k−i)(0)

(k − i)!

q(i)(0)

i!

∣

∣

∣

∣

∣

∣

2

≤ K

k
∑

i=max{0,k−M}

∣

∣

∣

∣

q(i)(0)

i!

∣

∣

∣

∣

2

,

since
k
∑

i=max{0,k−M}

∣

∣

∣

∣

R(k−i)(0)

(k − i)!

∣

∣

∣

∣

2

≤
M
∑

i=0

∣

∣

∣

∣

R(i)(0)

i!

∣

∣

∣

∣

2

= K

and K does not depend neither on the polynomials p and q nor on the nonneg-
ative integer k.
Using (2.2), we can bound the operator Tµ in the subspace X ⊂ P endowed
with the L2-norm defined by the measure µ as follows –since we are going to
consider two measures µ and σ, we denote the corresponding operator T by Tµ
and Tσ respectively–:
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(2.3)

‖Tµ(p)‖2
L2(µ) =

∑

k

∣

∣

∣

∣

p(k)(0)

k!

∣

∣

∣

∣

2

≤ K
∑

k

k
∑

i=max{0,k−M}

∣

∣

∣

∣

q(i)(0)

i!

∣

∣

∣

∣

2

≤ K(M+1)
∑

k

∣

∣

∣

∣

q(k)(0)

k!

∣

∣

∣

∣

2

.

Consider now the operator U defined from X to P by

U(p) =
∑

k

q(k)(0)

k!
pk.

To finish the proof, it is enough to prove that U is bounded in the norm generated
by the measure µ: indeed, to see that just write (2.3) in the following way

‖Tµ(p)‖2
L2(µ) ≤ K(M + 1)

∑

k

∣

∣

∣

∣

q(k)(0)

k!

∣

∣

∣

∣

2

= K(M + 1)

∥

∥

∥

∥

∥

∑

k

q(k)(0)

k!
pk

∥

∥

∥

∥

∥

2

L2(µ)

= K(M + 1)‖U(p)‖2
L2(µ).

We have to consider the measure σ defined by σ = |R(t)|2µ. Since

ind µ = N <
∑

l:µ({zl})>0

kl +
∑

l:µ({zl})=0

(kl + 1),

it follows from Lemma 2.1, p. 132 in [BD2] that the measure σ is indeterminate.
Hence, writing (qn)n for the sequence of orthonormal polynomials with respect
to σ, we have from Remark 2.1 that the operator Tσ(t

n) = qn is bounded in P

endowed with the L2-norm defined by σ.
To prove that the operator U is bounded we factorize it as U = H ◦ Tσ ◦ D,
where D : X → P is defined by D(p) = p/R = q and H is the linear isometry,
from P endowed with the L2-norm defined by the measure σ into P with the
L2-norm defined by the measure µ, defined by H(qn) = pn. It is clear that D is
also an isometry from X endowed with the norm defined by the measure µ into
P with the L2-norm defined by the measure σ. That implies that H ◦ Tσ ◦ D
is bounded from X into P both endowed with the L2-norm generated by the
measure µ. It is straightforward to see that U = H ◦ Tσ ◦D.

The converse of Theorem 2.3 is also true

Theorem 2.4. Let µ be a determinate measure and consider like in Theo-
rem 2.3 complex numbers z1, · · · , zm, nonnegative integers k1, · · · , km, such
that

∑

l:µ({zl})>0 kl +
∑

l:µ({zl})=0(kl + 1) = N + 1 and the polynomial R(t) =
∏m
l=1(t− zl)

kl+1. If the operator T is bounded in the subspace

X = {p(z) = R(z)q(z) : q ∈ P} =

m
⋂

l=1

kl
⋂

i=0

ker
(

δ(i)zl

)

then ind (µ) ≤ N .
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Proof. As in the proof of Theorem 2.3, we consider the measure σ = |R(t)|2µ.
Again from Lemma 2.1, p. 132 in [BD2] we deduce that if the measure σ is
indeterminate then

ind µ <
∑

l:µ({zl})>0

kl +
∑

l:µ({zl})=0

(kl + 1) = N + 1;

that is ind µ ≤ N . We then prove that σ is indeterminate.
To do that, we find a suitable expression for ‖Tµp‖L2(µ). Indeed, any polynomial

p can be written as p(t) =
∑

k ckpk =
∑

k akt
k; by the definition of Tµ we have

that

(2.4) ‖Tµp‖2
L2(µ) =

∑

k

|ak|2 =

∫ 2π

0

∣

∣p
(

eiθ
)∣

∣

2 dθ

2π
.

Since Tµ is bounded from X to P, there exists a constant c > 0 such that
‖Tµp‖2

L2(µ) ≤ c
∫

|p(t)|2dµ(t), for any p ∈ X ; hence (2.4) gives that for any
p ∈ X

(2.5)

∫ 2π

0

∣

∣p
(

eiθ
)∣

∣

2 dθ

2π
≤ c

∫

|p(t)|2dµ(t).

We now take a complex number a 6∈ R, a 6= zl, l = 1, · · · ,m, and |a| < 1.
Cauchy’s formula, the Cauchy-Schwarz inequality and (2.5) give for p ∈ X that

|p(a)|2 =

∣

∣

∣

∣

∣

1

2π

∫ 2π

0

p
(

eiθ
)

eiθ − a
eiθdθ

∣

∣

∣

∣

∣

2

≤
∫ 2π

0

∣

∣p
(

eiθ
)∣

∣

2 dθ

2π

∫ 2π

0

1

|eiθ − a|2
dθ

2π

≤ K

∫

|p(t)|2dµ(t).

Since X = {R(t)q(t) : q ∈ P}, we then have for any q ∈ P that

|R(a)q(a)|2 ≤ K

∫

|q(t)|2|R(t)|2dµ(t);

that is

|q(a)|2 ≤ K ′

∫

|q(t)|2dσ(t).

Taking in particular q(t) =
∑

k qk(a)qk(t), we deduce that
∑

k

|qk(a)|2 ≤ K ′.

From this it follows that (qn(a))n ∈ ℓ2, and since a 6∈ R the measure σ must be
indeterminate.
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Let us notice that as a consequence of Theorem 2.4 if ind (µ) = N then T is
not bounded in any subspace of the form

X =

m
⋂

l=1

kl
⋂

i=0

ker
(

δ(i)zl

)

,

if
∑

l:µ({zl})>0 kl +
∑

l:µ({zl})=0(kl + 1) < N + 1; i.e. Theorem 2.3 is sharp.

We complete this section proving that the boundedness of the operator T in a
subspace of P of finite codimension implies the boundedness below of certain
sequences of eigenvalues associated to the matrix A:

Theorem 2.5. Write 0 < λ1,n ≤ λ2,n ≤ · · · ≤ λn,n for the eigenvalues of the
truncated matrix An, n ≥ 1, of size n×n of the positive definite infinite matrix
A. If there exists a subspace X ⊂ P of codimension k such that the operator T
is bounded in X then the sequence of eigenvalues (λk+1,n)n is bounded below:
i.e., there exists c > 0 such that λk+1,n ≥ c > 0.

Proof. Since the subspace X has codimension k, we can choose k infinite se-
quences yi = (yi,l)l, i = 1, · · · , k, such that

X = {p(t) =
∑

l

alt
l :
∑

l

alyi,l = 0, i = 1, · · · , k}.

We now write Tn∣
∣X

for the restriction of T to the subspace of polynomials in

X with degree less than or equal to n. As in the proof of Theorem 1.1 we have
that:

1

‖Tn∣
∣X

‖2
= inf

{

xAn+1x
∗ : xx∗ = 1,

n
∑

l=0

xlyi,l = 0, i = 1, · · · , k, x ∈ C
n+1

}

≤ sup
z1,··· ,zk∈Cn+1

inf

{

xAn+1x
∗ : xx∗ = 1,

n
∑

l=0

xlzi,l = 0, i = 1, · · · , k, x ∈ C
n+1

}

= λk+1,n+1.

(The last equality is the Courant-Fischer Theorem [HJ], p. 179). And now it is
easy to finish the proof.

As a corollary we get that, a measure with finite index of determinacy equal to
N has its associated sequence of (N + 2)-smallest eigenvalues bounded below:

Corollary 2.6. If ind µ = N then there exists c > 0 such that λN+2,n ≥ c > 0,
n ∈ N.

Proof. Theorem 2.3 implies that the operator T is bounded in a subspace of P

of codimension N + 1. It is now enough to apply the previous Theorem.
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Remark 2.7. The converse of Corollary 2.6 remains as an open problem: let
µ be a determinate positive measure such that for some k > 1 the sequence of
eigenvalues (λk,n)n is bounded below, does µ have finite index of determinacy?
If the answer is yes, we would have a characterization of finite index of deter-
minacy in terms of the asymptotic behaviour of (λk,n)n, k > 1 (See [BD3] for
another characterization of finite index of determinacy).

3 Analytic functions associated to positive def-

inite infinite matrices

We start by proving Theorem 1.2

Proof. (of Theorem 1.2)
According to the Theorem 1.1, we have that ‖T ‖2 ≤ 1/c, so for any p(t) =
∑n
k=0 akt

k this gives
c〈Tp, T p〉 ≤ 〈p, p〉,

but by definition of the operator T this inequality is that

(3.1) c

n
∑

k=0

|ak|2 ≤ 〈p, p〉.

Assume now that |z| < 1 and p(z) =
∑n

k=0 akz
k = 1; then, applying the

Cauchy-Schwarz inequality

1 ≤
n
∑

k=0

|ak|2
n
∑

k=0

|zk|2 ≤
∑n

k=0 |ak|2
1 − |z|2 .

Using (3.1) we get that

inf{〈p, p〉 : p(t) =

n
∑

k=0

akt
k, p(z) = 1} ≥ c(1 − |z|2).

The left-hand side is equal to
1

∑n
k=0 |pk(z)|2

and therefore by letting n → ∞
we finally have that:

∞
∑

k=0

|pk(z)|2 ≤ 1

c

1

1 − |z|2 ≤ 1

c

1

1 − |z| .

The convergence of
∑∞

k=0 |pk(z)|2 can not be extended, in general, further than
the open unit disc. Indeed, consider the sequence of polynomials (zn)n. They are
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orthonormal with respect to the inner product whose Gram-matrix is the iden-
tity. The smallest eigenvalues are then constant equal to 1 and hence bounded
below, but

∞
∑

n=0

|pn(z)|2 =

∞
∑

n=0

|z|2n,

which diverges for |z| ≥ 1.
The converse of Theorem 1.2 is not true as the following example proves: let
A = (an,k)n,k be a diagonal infinite matrix with entries:

ak,k =

{

2−n, k = 2n, n ≥ 0,
1, otherwise.

It is clear that the smallest eigenvalue of An, n ≥ 1, tends to 0 as n tends to
infinity. The orthonormal polynomials with respect to A are

pk(z) =

{ (√
2
)n
z2n

, k = 2n, n ≥ 0,
zk, otherwise.

Then

(3.2)

∞
∑

k=0

|pk(z)|2 ≤
∞
∑

k=0

|z|2k +

∞
∑

k=0

2k|z|2k+1

.

But taking into account that |z|i ≤ |z|j for i ≥ j and that 2k+1 = 2k + 2k we
have

2k|z|2k+1

= |z|2k+1

+ · · · + |z|2k+1 ≤ |z|2k+1 + |z|2k+2 + · · · + |z|2k+1

,

which together with (3.2) give that

∞
∑

k=0

|pk(z)|2 ≤
∞
∑

k=0

|z|2k +

∞
∑

k=0

|z|k ≤ 2

1 − |z| .

We now prove Theorem 1.3 which establishes a converse of Theorem 1.2 as-
suming that

∑∞
k=0 |pk(z)|2 has an L1-extension to |z| = 1. This assumption is

however not necessary for the boundedness below of the sequence of smallest
eigenvalues of a positive definite matrix. Indeed, taking as before the identity
matrix, we have pn(z) = zn, n ∈ N , and

∞
∑

k=0

|pk(z)|2 =

∞
∑

k=0

|z|2k =
1

1 − |z|2

which does not have an L1-extension to |z| = 1.
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Proof. (of Theorem 1.3)
According to the proof of Theorem 1.1, we have that

λ1,n+1 = inf

{ 〈p, p〉
〈Tp, T p〉 : p 6= 0, p ∈ Pn

}

.

If we write p(t) =
∑

k ckpk, using (2.4) we can write:

1

λ1,n+1
= sup

{ 〈Tp, T p〉
〈p, p〉 : p 6= 0, p ∈ Pn

}

= sup

{

∫ 2π

0

∣

∣p
(

eiθ
)∣

∣

2 dθ
2π

∑

k |ck|2
: p 6= 0, p =

∑

k

ckpk ∈ Pn

}

= sup

{

∫ 2π

0

∣

∣p
(

eiθ
)∣

∣

2 dθ

2π
:
∑

k

|ck|2 = 1, p =
∑

k

ckpk ∈ Pn

}

.

We now consider the matrix (κl,j)l,j=0,··· ,n defined by

κl,j =

∫ 2π

0

pl
(

eiθ
)

pj (eiθ)
dθ

2π
.

Using it, we can write

1

λ1,n+1
= sup

{

∫ 2π

0

∣

∣p
(

eiθ
)∣

∣

2 dθ

2π
:
∑

k

|ck|2 = 1, p =
∑

k

ckpk ∈ Pn

}

= sup







∑

l,j

κl,jclc̄j :

n
∑

k=0

|ck|2 = 1







.

But this last supremum is the largest eigenvalue of the matrix (κl,j)l,j ; since
this matrix is positive definite, this largest eigenvalue is less than the sum of all
the eigenvalues, that is, the trace of (κl,j)l,j . Therefore:

1

λ1,n+1
≤

n
∑

l=0

κl,l =

n
∑

l=0

∫ 2π

0

∣

∣pl
(

eiθ
)∣

∣

2 dθ

2π

≤
∫ 2π

0

∞
∑

l=0

∣

∣pl
(

eiθ
)∣

∣

2 dθ

2π
=

∫ 2π

0

f
(

eiθ
) dθ

2π
<∞,

and the proof is finished.

As a consequence of Theorems 1.2 and 1.3 we get a characterization of complete
indeterminacy for matrix weights in terms of the behaviour of the smallest
eigenvalues of its truncated Hankel block matrices (see Theorem 1.1 of [BChI]
for the analogous result for positive measures). As usual, for a matrix weight W
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–i.e. a non degenerate positive definite N×N matrix of measures with moments
of any order–, we define the N ×N matrix of k-moments as

Ak =

∫

tkdW (t), k = 0, 1, · · · .

The corresponding Hankel block matrix is (Ak+n)k,n=0,1,···, which is a positive
definite infinite matrix. Complete indeterminacy is defined as follows; let (Pn)n
be a sequence of orthonormal matrix polynomials with respect to W . These
matrix polynomials satisfy a three term recurrence relation of the form:

(3.3) tPn(t) = An+1Pn+1(t) +BnPn(t) +A∗
nPn−1(t), n ≥ 0,

where An and Bn are N × N matrices such that detAn 6= 0 and Bn = B∗
n.

The determinacy or indeterminacy of the matrix weight W is related to the
deficiency indices δ+ and δ− of the operator J defined by the infinite N -Jacobi
matrix

J =











B0 A1 θ θ · · ·
A∗

1 B1 A2 θ · · ·
θ A∗

2 B2 A3 · · ·
...

...
. . .

. . .
. . .











on the space ℓ2, where An and Bn are the coefficients which appear in the
three-term recurrence relation (3.3).
The deficiency indices of a matrix weight are by definition the deficiency indices
of the operator defined on the space ℓ2 by its associated N -Jacobi matrix. In
[L], Theorem 3.1 (see also [B], Theorem 2.6, p. 570) it is proved that the rank
of the limit matrix R(λ) defined by

R(λ) = lim
n→∞

(

n
∑

k=0

P ∗
k (λ̄)Pk(λ)

)−1

is constant in every half-plane ℑλ > 0 and ℑλ < 0, and it coincides with the
deficiency indices of J . Thus the deficiency indices can be any natural number
from 0 to N , both being equal to 0 in the determinate case and both being equal
to N is the so-called completely indeterminate case.

Corollary 3.1. If A is an infinite N × N block Hankel matrix corresponding
to the matrix weight W , then W is completely indeterminate if and only if the
sequence of smallest eigenvalues (λ1,n)n is bounded below.

Proof. We need to consider the operators RN,m : P → P, m = 0, · · · , N − 1,
defined by

RN,m(p)(t) =
∑

n

p(nN+m)(0)

(nN +m)!
tn,

i.e., the operator RN,m takes from p just those powers with remainderm modulo
N and then removes tm and changes tN to t (for more details see [D], p. 92
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or [DV], Sect. 2). From the polynomials RN,m(p), m = 0, · · · , N − 1, we can
recover the polynomial p just writing
(3.4)
p(t) = RN,0(p)(t

N )+ tRN,1(p)(t
N )+ t2RN,2(p)(t

N )+ · · ·+ tN−1RN,N−1(p)(t
N ).

Notice that

(3.5) RN,i(t
kN+j) = tkδi,j , k ∈ N, i, j = 0, · · · , N − 1.

We have A = (Ak+n)k,n=0,1,···, where Ak, k = 0, 1, · · · , is the N × N matrix
of k-moments of W , that is, Ak =

∫

tkdW (t), k = 0, 1, · · · . The entry (kN +
i, nN + j), k, n = 0, 1, · · · and i, j = 0, · · · , N − 1, of the matrix A is then equal
to the entry (i, j) of the block Ak+n of A. Taking into account (3.5), we can
then write

〈tkN+i, tnN+j〉 = akN+i,nN+j = (Ak+n)i,j =

(∫

tk+ndW (t)

)

i,j

=

∫

(RN,0(t
kN+i), · · · , RN,i(tkN+i), · · · , RN,N−1(t

kN+i))dW (t)



















RN,0(tnN+j)
...

RN,j(tnN+j)
...

RN,N−1(tnN+j)



















.

From this equation we deduce the following expression for the inner product
associated to A:

(3.6) 〈p, q〉 =

∫

(RN,0(p), · · · , RN,N−1(p))dW (t)







RN,0(q)
...

RN,N−1(q)






.

This shows that if (pn)n is the sequence of orthonormal polynomials with respect
to A then the sequence of N ×N matrix polynomials (Pn)n defined by

(3.7) Pn =











RN,0(pnN ) · · · RN,N−1(pnN )
RN,0(pnN+1) · · · RN,N−1(pnN+1)

...
. . .

...
RN,0(pnN+N−1) · · · RN,N−1(pnN+N−1)











are orthonormal with respect to the matrix weight W .
To prove the Theorem we use the following characterization of completely in-
determinate matrix weights: the matrix weight W is completely indeterminate
if and only if for some z ∈ C \ R the series

∑

n(Pn(z))
∗Pn(z) converges (see

[L], Sect. 2). In the affirmative case the series converges for all z ∈ C, even
uniformly on compact subsets of C.
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Since the matrices (Pn(z))∗Pn(z), n ∈ N, are positive definite, it follows that
∑

n(Pn(z))
∗Pn(z) converges if and only if the entries on its diagonal are con-

vergent sequences. Since the entries on its diagonal are (see (3.7))

∑

n

(

|RN,k(pnN )(z)|2 + · · · + |RN,k(pnN+N−1)(z)|2
)

,

k = 0, · · · , N − 1, we deduce that

(3.8)

∑

n(Pn(z))∗Pn(z) converges if and only if
for k = 0, · · · , N − 1,

∑

n |RN,k(pn)(z)|2 converges.

If we assume that W is completely indeterminate, we then have for z ∈ C and
k = 0, · · · , N −1, that

∑

n |RN,k(pn)(z)|2 converges; from (3.4) we get that also
for z ∈ C,

∑

n |pn(z)|2 converges. But this is then a continuous function and
hence

f
(

eiθ
)

=
∑

n

|pn(eiθ)|2 ∈ L1(T).

From Theorem 1.3 we then deduce that the sequence of smallest eigenvalues
(λ1,n)n is bounded below.
Conversely, if (λ1,n)n is bounded below, we deduce from Theorem 1.2 that
∑

n |pn(z)|2 converges for |z| < 1. We now take z = i/2 and denote by zk, k =
0, · · · , N−1, the N differentN -th roots of i/2. We then have that (pn(zk))n ∈ ℓ2

for k = 0, · · · , N − 1. But (3.4) then gives for k = 0, · · · , N − 1:

p(zk) = RN,0(p)(z
N
k ) + zkRN,1(p)(z

N
k ) + z2

kRN,2(p)(z
N
k ) + · · · + zN−1

k RN,N−1(p)(z
N
k )

= RN,0(p)(i/2) + zkRN,1(p)(i/2) + z2
kRN,2(p)(i/2) + · · · + zN−1

k RN,N−1(p)(i/2).

Since the matrix B = (zjk)k,j=0,··· ,N−1 is nonsingular and (pn(zk))n ∈ ℓ2 for
k = 0, · · · , N − 1, we can conclude that also (RN,m(pn)(i/2))n ∈ ℓ2 for m =
0, · · · , N − 1. But, according to (3.8) this implies that

∑

n(Pn(i/2))∗Pn(i/2)
converges, and therefore that the matrix weight W is completely indeterminate.

Corollary 3.1 has the following interesting consequence concerning again mea-
sures with finite index of determinacy. Each positive measure µ can be con-
sidered as a matrix weight as follows: for N ∈ N we define the matrix of
measures Wµ = (µi,j)

N−1
i,j=0 by µi,j = ψN (ti+jµ), the image measure of ti+jµ

under ψN (t) = tN , i.e.

µi,j(A) =

∫

ψ−1

N
(A)

ti+jdµ(t), A ∈ B,

the Borel subsets of R. It is easy to see that Wµ is a matrix weight. A straight-
forward computation now shows that

〈p, q〉Wµ
=

∫

(RN,0(p), · · · , RN,N−1(p))dWµ(t)







RN,0(q)
...

RN,N−1(q)






=

∫

p(t)q(t)dµ(t),
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that is, the inner product associated to the matrix weightWµ using the operators
RN,m, m = 0, · · · , N − 1, coincides with the usual inner product defined by the
positive measure µ.
Positive measures with finite index of determinacy have the following surprising
property: if ind (µ) = k then for N = 1, 2, · · · , k + 1 the matrix weight Wµ is
determinate, but for N ≥ k + 2 the matrix weight Wµ is indeterminate (Th. 2,
p. 525 of [BD3]). Using Corollary 3.1, we can say more about this property:

Corollary 3.2. If ind (µ) = k, then for N ≥ k + 2 the matrix weight Wµ is
indeterminate but never completely indeterminate.

Proof. It is straightforward to see that µ andWµ have the same Hankel matrices.
Since µ is determinate we have that the sequence (λ1,n)n tends to 0 as n tends to
infinity, but from Corollary 3.1 follows that Wµ is not completely indeterminate.

Using Theorem 1.2 a linear mapping from ℓ2 to the space of analytic functions
in D can be associated to any positive definite infinite matrix A with smallest
eigenvalues bounded below.
Indeed, if (pn)n is the sequence of orthonormal polynomials with respect to A
then, we define R : ℓ2 → H(D) by R((an)n) =

∑

n anpn(z). According to The-
orem 1.2 the function

∑

n anpn(z) defines an analytic function in D satisfying:

∣

∣

∣

∣

∣

∑

n

anpn(z)

∣

∣

∣

∣

∣

≤
(

∑

n

|an|2
)1/2(

∑

n

|pn(z)|2
)1/2

≤ K
√

1 − |z|
.

Each Fourier series
∑

n anpn, (an)n ∈ ℓ2, is then realized as an holomorphic
function in the Bergman space Ap(D), 0 < p < 2:

∫

D

∣

∣

∣

∣

∣

∑

n

anpn(z)

∣

∣

∣

∣

∣

p

dm2(z) ≤
∫ 1

0

∫ 2π

0

Kp

(1 − r)p/2
rdrdθ = 2πKp

∫ 1

0

r

(1 − r)p/2
dr <∞.
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