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Abstract

We introduce a non-linear injective transformation T from the set of
non-vanishing normalized Hausdorff moment sequences to the set of nor-
malized Stieltjes moment sequences by the formula T [(an)]n = 1/(a1 · . . . ·
an). Special cases of this transformation have appeared in various papers
on exponential functionals of Lévy processes, partly motivated by math-
ematical finance. We give several examples of moment sequences arising
from the transformation and provide the corresponding measures, some of
which are related to q-series.
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1 Introduction and main results

In his fundamental memoir [23] Stieltjes characterized sequences of the form

sn =

∫ ∞

0

xn dµ(x), n = 0, 1, 2, . . . , (1)

where µ is a non-negative measure on [0,∞[, by certain quadratic forms being
non-negative. These sequences are now called Stieltjes moment sequences. They
are called normalized if s0 = 1. A Stieltjes moment sequence is called determinate,
if there is only one measure µ on [0,∞[ such that (1) holds; otherwise it is
called indeterminate. It is to be noticed that in the indeterminate case there are
also solutions µ to (1), which are not supported by [0,∞[, i.e. solutions to the
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corresponding Hamburger moment problem. However unless explicitly stated we
only consider measures supported by [0,∞[.

Later Hausdorff, cf. [19], characterized the Stieltjes moment sequences for
which the measure is concentrated on the unit interval [0, 1] by complete mono-
tonicity. Both results can be found in [25] or in [4]. A Hausdorff moment sequence

an =

∫ 1

0

xn dµ(x), n = 0, 1, 2, . . . , (2)

is either non-vanishing (i.e. an 6= 0 for all n) or of the form an = cδ0n with
c ≥ 0, where (δ0n) is the sequence (1, 0, 0, . . .). The latter corresponds to the
Dirac measure δ0 with mass 1 concentrated at 0.

Our main result is the following construction of Stieltjes moment sequences
from Hausdorff moment sequences.

Theorem 1.1 Let (an) be a non-vanishing Hausdorff moment sequence. Then
(sn) defined by s0 = 1 and sn = 1/(a1 · . . . · an) for n ≥ 1 is a normalized Stieltjes
moment sequence.

The proof of Theorem 1.1, which will be given in Section 2, is rather con-
structive: We find explicitly a Stieltjes measure for those sequences (sn), which
are defined from the Hausdorff moment sequence of a finite linear combination
of Dirac deltas. Finally we use that the set of finite linear combinations of Dirac
deltas is dense in the set of positive measures supported in [0, 1]. To find the
Stieltjes measure associated to a finite linear combination of Dirac deltas we
use a technique whose philosophy goes back to Euler: Development of q-infinite
products of several complex variables in power series—see for instance Chapter
XVI or even Chapter X of his masterpiece Introductio in Analysin Infinitorum,
in English version [17].

One can say that the proof could in principle have been found by Hausdorff
or Stieltjes, if they had been motivated to search for such a non-linear result.
We shall explain below that our motivation comes from recent work by Bertoin,
Carmona, Petit and Yor on exponential functionals of Lévy processes, partly
inspired by questions from mathematical finance.

Remark 1.2 If we replace the Hausdorff moment sequence (an) by ((1/c)an)
with c > 0, then Theorem 1.1 gives the apparently more general result that
s0 = 1, sn = cn/(a1 · . . . · an) for n ≥ 1 is a Stieltjes moment sequence. Since
however (cn) is a Stieltjes moment sequence for any c > 0, and the product of two
Stieltjes moment sequences is again a Stieltjes moment sequence (see below), we
do not stress this more general version. In Section 3 we shall discuss the above
transformation from non-vanishing normalized Hausdorff moment sequences to
normalized Stieltjes moment sequences.
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We recall that a function ϕ : ]0,∞[ 7→ [0,∞[ is called completely monotonic,
if it is C∞ and (−1)kϕ(k)(s) ≥ 0 for s > 0, k = 0, 1, . . .. By the Theorem of
Bernstein we have

ϕ(s) =

∫ ∞

0

e−sx dα(x), (3)

where α is a non-negative measure on [0,∞[. Clearly ϕ(0+) = α([0,∞[). If α is
a non-zero finite measure, then (an) = (ϕ(n)) is a Hausdorff moment sequence
such that an 6= 0 for all n, and the representing measure is the image measure
of α under x 7→ exp(−x). Conversely, any Hausdorff moment sequence (an) with
an 6= 0 for all n is of the form

an = cδ0n +

∫ 1

0

xn dµ(x)

with c ≥ 0 and µ({0}) = 0, µ 6= 0, hence an = ϕ(n), n ≥ 1 and a0 = c + ϕ(0+),
where ϕ is given by (3), and α is the image measure of µ under x 7→ − log x.

Therefore Theorem 1.1 is essentially equivalent to the following result:

Theorem 1.3 Let ϕ be a non-zero completely monotonic function. Then (sn)
defined by s0 = 1 and sn = 1/(ϕ(1) · . . . ·ϕ(n)) for n ≥ 1 is a normalized Stieltjes
moment sequence.

Remark 1.4 If ϕ(0+) < ∞ the Theorems 1.1, 1.3 are equivalent, but it should
be noticed that ϕ(0+) = ∞ is not excluded. The proof of Theorem 1.3 is given
in Section 2.

The evaluation of ϕ at the integers can be replaced by the evaluation at the
sequence p+nq, n = 1, 2, . . ., where p ≥ 0, q > 0 are real numbers. The conclusion
is that s0 = 1, sn = 1/(ϕ(p + q) · . . . · ϕ(p + nq)), n ≥ 1 is a normalized Stieltjes
moment sequence.

A Hausdorff moment sequence (2) is decreasing with a∞ := limn→∞ an =
µ({1}), and a completely monotonic function (3) is decreasing with ϕ(∞) :=
lims→∞ ϕ(s) = α({0}). We shall now see how these quantities are related to
the support of the representing measure(s) of the Stieltjes moment sequences of
Theorem 1.1 and Theorem 1.3. The proof will be postponed to Section 2.

Theorem 1.5 Let (an) (resp. ϕ) and (sn) be as in Theorem 1.1 (resp. Theorem
1.3).

If a∞ = 0 (resp. ϕ(∞) = 0) then any representing measure for (sn) has
unbounded support.

If a∞ = c > 0 (resp. ϕ(∞) = c > 0) then (sn) is determinate and the support
S of the uniquely determined representing measure satisfies 1/c ∈ S ⊆ [0, 1/c].

The sequence (sn) is a Hausdorff moment sequence if and only if a∞ ≥ 1
(resp. ϕ(∞) ≥ 1).
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Let (ηt)t>0 be a convolution semigroup of sub-probabilities on [0,∞[ with
Laplace exponent or Bernstein function f given by∫ ∞

0

e−sx dηt(x) = e−tf(s), s > 0,

cf. [6],[9]. We recall that f has the integral representation

f(s) = a + bs +

∫ ∞

0

(1− e−sx) dν(x), (4)

where a, b ≥ 0 and the Lévy measure ν on ]0,∞[ satisfies the integrability con-
dition

∫
x/(1 + x) dν(x) < ∞. Note that ηt([0,∞[) = exp(−at), so that (ηt)t>0

consists of probabilities if and only if a = 0.
In the following we shall exclude the Bernstein function identically equal to

zero, which corresponds to the convolution semigroup ηt = δ0, t > 0.
It is well-known and easy to see that f(s)/s and 1/f(s) are completely mono-

tonic functions, when f is a non-zero Bernstein function, viz. the Laplace trans-
forms of the following measures

λ = bδ0 + (a + ν(]x,∞[)) dY (x), κ =

∫ ∞

0

ηt dt, (5)

where Y denotes Lebesgue measure on [0,∞[.
These two completely monotonic functions lead to the following known results

as special cases of Theorem 1.3:

Corollary 1.6 ([13],[14],[24]). Let f be a non-zero Bernstein function. Then
s0 = 1, sn = n!/(f(1) · . . . · f(n)) for n ≥ 1 is a Stieltjes moment sequence.

Corollary 1.7 ([11]). Let f be a non-zero Bernstein function. Then s0 = 1, sn =
f(1) · . . . · f(n) for n ≥ 1 is a Stieltjes moment sequence.

Theorems 1.1,1.3 were in fact found by searching for a result containing both
Corollaries. In [11],[13], [14] the authors only consider Bernstein functions f with
a = f(0) = 0.

It is stressed that our Theorems are more general than the results of the
two Corollaries. As we shall see below in Example 2.4, the Hausdorff moment
sequence (qn) for 0 < q < 1 leads to an indeterminate Stieltjes moment sequence,
while the Stieltjes moment sequences of the Corollaries are always determinate
as shown by the following remark.

Remark 1.8 The Stieltjes moment sequences of Corollary 1.6 and Corollary 1.7
are determinate as pointed out in [14] and [11].
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First of all sn = n! is a determinate Stieltjes moment sequence of the expo-
nential distribution exp(−x) dY (x). The determinacy follows from Carleman’s
criterion which states that the divergence of the series

∞∑
n=0

1/ 2n
√

sn

implies that the moment sequence is determinate (in the sense of Stieltjes),
cf. [22]. By Stirling’s formula the series in question is divergent. Since sn =
n!/(f(1) · . . . · f(n)) ≤ n!/(f(1))n, also this moment sequence is determinate.
Since f(s)/s → b for s →∞, where b is the drift term in the representation (4),
we see by Theorem 1.5 that the support of the representing measure for (sn) is
contained in [0, 1/b]. We also get that (sn) is a Hausdorff moment sequence if
and only if b ≥ 1.

Since a Bernstein function f satisfies f(s) ≤ f(1)s, s ≥ 1, we have sn :=
f(1) · . . . · f(n) ≤ f(1)nn!, and the determinacy of (sn) follows again by the
criterion of Carleman. By Theorem 1.5 the support of the representing measure
is contained in [0, f(∞)], and (sn) is a Hausdorff moment sequence if and only if
f(∞) ≤ 1.

The proofs of the results in [13],[14],[11] use techniques from stochastic pro-
cesses. To be more specific one considers a Lévy process ξ = (ξt, t ≥ 0) de-
termined by the convolution semigroup (ηt)t>0 corresponding to the non-zero
Bernstein function f (with f(0) = 0), and one defines the exponential functional

I =

∫ ∞

0

exp(−ξt) dt.

This random variable plays an important role in mathematical finance as well as
in the study of the self-similar Markov processes obtained from ξ by a classical
transformation of Lamperti, see [21]. In [13], [14], [24] it is proved that the
stochastic variable I has the moments

E(In) =
n!

f(1) · . . . · f(n)
, (6)

which is the Stieltjes moment sequence corresponding to the completely mono-
tonic function f(s)/s.

To prove the result of [11] the authors introduce the strong Markov process
X = (Xt, t ≥ 0) by

Xt = exp(ξτ(t)), t ≥ 0,

where the time-change τ(t) is defined by the identity

t =

∫ τ(t)

0

exp(ξs) ds.
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They prove that the expectation of the variable 1/Xt is a completely monotonic
function of t and thus the Laplace transform of a probability ρ. The moments of
ρ are proved to be given by∫ ∞

0

xn dρ(x) = f(1) · . . . · f(n), (7)

which is the Stieltjes moment sequence corresponding to the completely mono-
tonic function 1/f(s).

One should note that a non-zero Bernstein function f leads to the factoriza-
tions

1/s = [f(s)/s][1/f(s)], Y = λ ∗ κ (8)

of respectively completely monotonic functions and measures, where we use the
notation from (5). The paper [11] contains further information about the mea-
sures ρ given by (7). For further results about moments and exponential func-
tionals see [12] and references therein.

In [20] Jacobsen and Yor consider an n-dimensional subordinator (ξt)t>0 with
non-vanishing Laplace exponent

Φ(s) = 〈b, s〉+

∫
Rn

+\{0}
(1− exp(−〈x, s〉)) dν(x), s = (s1, . . . , sn) ∈ Rn

+, (9)

where b ∈ Rn
+ and ν is the Lévy measure. They prove that for any s, t ∈ Rn

+,
where t 6= 0, then

sn =
n∏

k=1

k

Φ(s + kt)
and sn =

n∏
k=1

Φ(s + kt) (s0 = 1)

are Stieltjes moment sequences. These results are special cases of Theorem 1.3,
because λ → Φ(s + λt) is a non-vanishing Bernstein function.

In [11] Bertoin and Yor remarked that the determinacy in Remark 1.8 leads
to a factorization of moments and distributions which is analogous to (8)

n! = [n!/(f(1) · . . . · f(n))][f(1) · . . . · f(n)], exp(−x) dY (x) = Î � ρ. (10)

Here Î is the distribution of the stochastic variable I in (6), ρ is given by (7) and �
denotes product convolution of measures on [0,∞[. The product convolution µ�ν
of two measures µ and ν on [0,∞[ is defined as the image measure of µ⊗ν under
the product mapping s, t 7→ st. The second equation follows from the first since
the n’th moment of the product convolution is the product of the n’th moments
of the factors. Therefore the product convolution has the same moments as the
exponential distribution, which is determinate.

Note that the second equation in (10) implies that neither Î nor ρ has mass
at zero.

The following result is an extension of Corollary 1.7.
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Corollary 1.9 Let f be a non-zero Bernstein function and let c > 0 be arbitrary.
Then s0 = 1, sn = (f(1) · . . . · f(n))c for n ≥ 1 is a Stieltjes moment sequence,
which is determinate for c ≤ 2.

Proof: It suffices to show that 1/f c is completely monotonic, which follows
since more generally ϕ(f(s)) is completely monotonic when ϕ is so, cf. [6]. Here
we use the completely monotonic function ϕ(s) = s−c. (One can also see that
1/f c is the Laplace transform of the measure

1

Γ(c)

∫ ∞

0

tc−1ηt dt,

which is the c’th convolution power of the potential kernel κ of the semigroup
(ηt)t>0 defined in (5).)

The criterion of Carleman used above shows the determinacy for c ≤ 2. �

Remark 1.10 There exist Bernstein functions f for which sn = (f(1)·. . .·f(n))c

is indeterminate for c > 2. This is discussed in [5], and it proves that the assertion
in Corollary 1.9 about determinacy is best possible.

2 Proofs

The set S of Stieltjes moment sequences (sn) will be considered as a subset of
[0,∞[N0 with the product topology. We need the following well-known fact about
S:

Lemma 2.1 The set S is a closed set stable under pointwise sums, products and
multiplication by non-negative scalars.

Proof: We first recall that a sequence of real numbers (sn)n≥0 is called positive
definite if all the symmetric matrices (si+j)0≤i,j≤n are non-negative, i.e.

n∑
i=0

n∑
j=0

si+jcicj ≥ 0 for all (c0, c1, . . . , cn) ∈ Rn+1,

cf. [4]. The Theorem of Stieltjes tells that (sn) ∈ S if and only if (sn) and (sn+1)
are positive definite. This shows that S is a closed set. It is clearly stable under
pointwise sums and multiplication by non-negative scalars, but it is also stable
under pointwise products by the Theorem of Schur, cf. [4, p. 69]. The latter
property is also a consequence of the following remark, which will be needed
later: let (sn) and (tn) be two Stieltjes moment sequences of the measures µ and
ν respectively. Then (sntn) is the moment sequence of the product convolution
measure µ � ν. �
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Lemma 2.2 Let µ, ν be two measures on [0,∞[ with moments of all orders and
assume that µ is indeterminate, ν({0}) = 0 and ν 6= 0. Then µ � ν is indetermi-
nate.

Proof: For a positive measure µ on the real line with moments of any order and
corresponding sequence of orthonormal polynomials (pn) we recall the following
formula, where z0 ∈ C is arbitrary

inf

{∫
|p(x)|2 dµ(x) | p ∈ C[x], p(z0) = 1

}
=

(
∞∑

n=0

|pn(z0)|2
)−1

, (11)

cf. [1, p. 60].
A necessary and sufficient condition for µ to be indeterminate for the Ham-

burger moment problem is that the quantity (11) is strictly positive at z0 = i,
and if this is the case, then the function

ρ(z) =

(
∞∑

n=0

|pn(z)|2
)−1

is strictly positive and continuous for z ∈ C.
Let now µ be the measure of the lemma which by assumption is indeterminate

for the Stieltjes moment problem and a fortiori for the Hamburger moment pro-
blem. Let µ′ be an arbitrary of the measures on [0,∞[ with the same moments
as µ. Since the measures µ � ν and µ′ � ν have the same moments (but we do
not know if they are different), it is enough to prove that µ′ � ν is indeterminate
for a conveniently chosen µ′. We shall choose µ′ such that µ′({0}) = 0, which is
always possible for an indeterminate Stieltjes problem, cf. e.g. [8, Remark 2.2.2].
Without loss of generality we will therefore assume that µ({0}) = 0.

By assumption about ν there exists x0 > 0 belonging to the support of ν. For
0 < ε < x0 we then have ν(]x0 − ε, x0 + ε[) > 0.

For p ∈ C[x] satisfying p(i) = 1 and y ∈ ]x0 − ε, x0 + ε[ we consider the
polynomial qy(x) := p(xy) which satisfies qy(i/y) = 1. By formula (11) we have∫

|qy(x)|2 dµ(x) ≥ ρ(i/y),

hence∫
|p(t)|2 dµ � ν(t) ≥

∫ x0+ε

x0−ε

(∫
|p(xy)|2µ(x)

)
dν(y) ≥

∫ x0+ε

x0−ε

ρ(i/y) dν(y).

Since the last term is strictly positive and independent of the polynomial p,
it follows that µ � ν is indeterminate for the corresponding Hamburger mo-
ment problem. Then it is also indeterminate as a Stieltjes problem, unless it
is the N-extremal solution with mass at zero, cf. [15]. However µ � ν({0}) =
µ([0,∞[)ν({0}) + µ({0})ν(]0,∞[) = 0, so this possibility is excluded. �
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Remark 2.3 It can be proved that Lemma 2.2 holds under the weaker assump-
tion that ν 6= cδ0, c ≥ 0. In fact, if ν({0}) > 0 then ν = ν({0})δ0 + ν ′ with
ν ′ satisfying the assumptions of the Lemma. Therefore µ � ν ′ is indeterminate.
Since µ�ν = µ([0,∞[)ν({0})δ0 +µ�ν ′, it follows that also µ�ν is indeterminate.

We now give some examples of Theorem 1.1, and we shall use these as building
blocks in the proof.

Example 2.4 For 0 < q ≤ 1 let an = qn be the Hausdorff moment sequence
corresponding to the Dirac measure δq concentrated at q. The claim of Theorem

1.1 for this sequence is that sn = q−(n+1
2 ) is a Stieltjes moment sequence. This

is clear for q = 1 but in fact true also for q < 1, since it is the moments of the
density

v(x) =
q1/8√

2π log(1/q)

1√
x

exp

[
− (log x)2

2 log(1/q)

]
, x > 0

which is closely related to a log-normal density. There are many probabilities on
[0,∞[ with the same moments as v, cf. [16] for a recent paper on this indetermi-
nate Stieltjes moment problem.

The next example involves basic hypergeometric functions, for which we refer
the reader to the monograph by Gasper and Rahman [18]. We recall the q-shifted
factorials

(z; q)n =
n−1∏
k=0

(1− zqk), z ∈ C, 0 < q < 1, n = 1, 2, . . . ,∞

and (z; q)0 = 1. Note that (z; q)∞ is an entire function of z.

Example 2.5 For c > 0 and 0 < q < 1 the (non-normalized) Hausdorff moment
sequence an = 1 + cqn−1, n ≥ 0 of the measure δ1 + (c/q)δq leads by Theorem
1.1 to the sequence sn = 1/(−c; q)n. This is a Stieltjes moment sequence of the
following discrete probability

µ =
1

(−c; q)∞

∞∑
k=0

q(
k
2)

(q; q)k

ckδqk .

In fact, by the q-binomial Theorem, cf. [18], we have∫
xn dµ(x) =

1

(−c; q)∞

∞∑
k=0

q(
k
2)

(q; q)k

(cqn)k =
(−cqn; q)∞
(−c; q)∞

=
1

(−c; q)n

.

Since the measure µ has compact support, the Stieltjes moment sequence is
determinate.
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The next example is an extension of Example 2.5 but more involved, and it is
therefore presented as a lemma. It is the main ingredient in the proof of Theorem
1.1.

Lemma 2.6 Let p ≥ 1, cj > 0, 0 < qj < 1, j = 1, . . . , p be given. Then s0 = 1,

sn =
n−1∏
k=0

(1 + c1q1
k + · · ·+ cpqp

k)−1, n ≥ 1

is a Stieltjes moment sequence.

Proof: Consider the entire function of p complex variables

f(z1, . . . , zp) =
∞∏

k=0

(1 + z1q1
k + · · ·+ zpqp

k).

The power series expansion of f can be written

f(z) = f(z1, . . . , zp) =
∑

α

bαzα,

where we use the multi-index notation

z = (z1, . . . , zp), α = (α1, . . . , αp), zα = zα1
1 · . . . · zαp

p ,

and the sum is over all integers α1 ≥ 0, . . . , αp ≥ 0. The coefficients bα = bα(q)
of the power series are positive as sums of products of powers of q1, . . . , qp.

Let

µ =
1

f(c1, . . . , cp)

∑
α

bαcαδqα .

Then µ is a probability measure with compact support.
The n’th moment of µ is

sn =
1

f(c)

∑
α

bαcα(qα)n =
f(c1q1

n, . . . , cpqp
n)

f(c1, . . . , cp)
=

n−1∏
k=0

(1 + c1q1
k + · · ·+ cpqp

k)−1.

�

Proof of Theorem 1.1:
Any non-negative measure µ on [0, 1] is weak limit of a sequence of discrete

measures of the form a1δx1 + · · ·+ apδxp , where aj > 0, j = 1, . . . , p and 0 < x1 <
x2 < · · · < xp < 1. By the closedness of S stated in Lemma 2.1, it is enough to
prove Theorem 1.1 for discrete measures of this type, i.e. to prove that

sn =
n∏

k=1

(a1x1
k + · · ·+ apxp

k)−1, (12)
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(with s0 = 1) belongs to S.
We have

sn = (1/ap)
n(xp)

−(n+1
2 )

n∏
k=1

(
1 +

a1

ap

(
x1

xp

)k + · · ·+ ap−1

ap

(
xp−1

xp

)k

)−1

,

which is the pointwise product of 3 Stieltjes moment sequences, namely (1/ap)
n,

and moment sequences of the type discussed in Example 2.4 and Lemma 2.6. A
representing measure is the product convolution of 3 corresponding representing
measures. �

Remark 2.7 The moment sequence (12) is indeterminate since the factor

(xp)
−(n+1

2 )

is an indeterminate moment sequence, cf. Lemma 2.2.

Remark 2.8 For a Stieltjes moment sequence (sn) all the Hankel determinants

Hn = det(si+j)0≤i,j≤n, H ′
n = det(si+j+1)0≤i,j≤n

are non-negative. Conversely, if for a real sequence (sn) we have Hn > 0, H ′
n > 0

for all n ≥ 0, then (sn) is a Stieltjes moment sequence. Using the special form
sn = 1/(a1 · . . . · an) we obtain two sequences of inequalities for a non-vanishing
Hausdorff moment sequence (an).

We have not found a proof of Theorem 1.1 by verification of the positivity of
the Hankel determinants.

Proof of Theorem 1.3:
We only have to prove the result for completely monotonic functions ϕ with

ϕ(0+) = ∞, since it follows from Theorem 1.1 if ϕ(0+) < ∞. For ε > 0 the
function ϕε(s) = ϕ(s + ε) is completely monotonic with ϕε(0+) = ϕ(ε) < ∞, so

sn(ε) =
1

ϕ(1 + ε) · . . . · ϕ(n + ε)

is a Stieltjes moment sequence. The result now follows from the closedness of S
letting ε tend to zero. �

For the proof of Theorem 1.5 we need the following elementary result.

Lemma 2.9 Let

sn =

∫ ∞

0

xn dµ(x)
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be a Stieltjes moment sequence. If a > 0 belongs to the support of µ, then for
0 < ε < a there exists A > 0 such that

sn ≥ A(a− ε)n, n ≥ 0.

The support of µ is contained in [0, c] for some c > 0 if and only if there exists
K > 0 such that

sn ≤ Kcn, n ≥ 0. (13)

Proof: If a belongs to the support of µ and 0 < ε < a, then A := µ(]a− ε, a+
ε[) > 0 and

sn ≥
∫ a+ε

a−ε

xn dµ(x) ≥ A(a− ε)n.

If the support of µ is contained in [0, c], then clearly sn ≤ Kcn with K =
µ([0,∞[).

Conversely, if (13) holds there cannot be a point a in the support of µ with
a > c by the first part of the Lemma. �

Proof of Theorem 1.5:
We shall only prove the results about Hausdorff moment sequences since the

other results follow in the same way.
Suppose first that a∞ = 0. For any ε > 0 there exists N ∈ N such that an ≤ ε

for n ≥ N and hence for such n

sn ≥
εN

a1 · . . . · aN

(
1

ε

)n

.

Since ε > 0 was arbitrary, it follows by Lemma 2.9 that the support of µ is
unbounded.

Suppose next that a∞ = c > 0. Then clearly sn ≤ (1/c)n, which shows that
the support S of µ is contained in [0, 1/c], and then µ is determinate.

On the other hand, since an → c there exists to any ε > 0 an N ∈ N such
that

sn ≥
(c + ε)N

a1 · . . . · aN

(
1

c + ε

)n

, n ≥ N.

This shows by Lemma 2.9 that 1/c ∈ S.
If finally a∞ ≥ 1, then S is a subset of the unit interval, so (sn) is a Hausdorff

moment sequence. Conversely, if (sn) is a Hausdorff moment sequence and in
particular decreasing, we get from sn ≤ sn−1 that an ≥ 1 and hence a∞ ≥ 1. �

As an application of Theorem 1.5 and Theorem 1.1 we get:

Corollary 2.10 For an arbitrary Hausdorff moment sequence (an) the sequence
(sn) defined by s0 = 1 and sn = 1/((1+a1) · . . . · (1+an)) for n ≥ 1 is a Hausdorff
moment sequence.
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For a non-negative measure µ on [0,∞[ with moment sequence (sn) the mo-
ment generating function is given as∫ ∞

0

exp(tx) dµ(x) =
∞∑

n=0

tn

n!
sn. (14)

If the radius of convergence of the power series in (14) is > 0, then it is
well-known that µ is determinate.

For the moment sequences under consideration we get the following simple
result.

Theorem 2.11 Let (an) (resp. ϕ) and (sn) be as in Theorem 1.1 (resp. Theorem
1.3).

If limn→∞ nan = R (resp. limn→∞ nϕ(n) = R) then R ∈ [0,∞] is the radius
of convergence of the power series in (14).

The proof is straightforward by considering the quotient of two consecutive terms
of the power series.

Applying Theorem 2.11 the determinacy discussed in Remark 1.8 can also be
obtained as a consequence of the finiteness of the moment generating function
(14). This was also pointed out in [14] and [11]. We give the following precise
statement.

Theorem 2.12 Let f be a non-zero Bernstein function with the representation
(4). The radius of convergence R of the power series in (14) is given by

(i) R = f(∞) if sn = n!/(f(1) · . . . · f(n)).

(ii) R = 1/b if sn = f(1) · . . . · f(n).

3 Complements and examples

Given a non-vanishing Hausdorff moment sequence (an) with representing mea-
sure µ, then (cδ0n + an) is again a non-vanishing Hausdorff moment sequence for
any c ≥ −µ({0}), and they all give rise to the same normalized Stieltjes moment
sequence by the construction of Theorem 1.1.

We denote by T the transformation from the set H∗ of non-vanishing normal-
ized Hausdorff moment sequences a = (an) to the set S∗ of normalized Stieltjes
moment sequences s = (sn) given by Theorem 1.1, viz.

sn = T [(an)]n = 1/(a1 · . . . · an), n ≥ 1. (15)
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Note that T is multiplicative, i.e.

T [(anbn)] = T [(an)]T [(bn)]. (16)

The image of H∗ under T is the set of normalized Stieltjes moment sequences
(sn) for which an = sn−1/sn, n ≥ 1, is a Hausdorff moment sequence (with
a0 = 1). It is clear that T is a bijection of H∗ onto this set.

The image is different from S∗. In fact sn = n! is a Stieltjes moment sequence
which does not belong to T (H∗). If this sequence would belong to the image of
T , then an = 1/n, n ≥ 1, a0 = 1 should be a Hausdorff moment sequence of a
measure µ, hence ∫ 1

0

(1− x) dµ(x) = 0,

but this is only possible if µ = δ1 which does not have the right moments. (One
can also easily see that an = 1/n, n ≥ 1, a0 > 1 can never be a Hausdorff moment
sequence.)

The example just given also shows that the transformation T cannot be
extended to a transformation of S∗ into itself by the formula (15), because
T [(n!)]n = (1! · . . . · n!)−1 is not a Stieltjes moment sequence. The reason is
that the second Hankel determinant is negative.

Let (an) ∈ H∗ with representing measure µ, and suppose that s = T [(an)]
is determinate with representing measure ν, which is then uniquely determined.
The equation an+1sn+1 = sn, n ≥ 0 means that the measures (x dµ(x))� (x dν(x))
and ν have the same moments, and since ν is assumed determinate we get

(x dµ(x)) � (x dν(x)) = ν. (17)

By Lemma 2.2 it follows that also the measure x dν(x) is determinate. The
process can now be iterated, and we find that all the measures xn dν(x), n ≥
0 are determinate. Using a terminology from [7] one can say that the index
of determinacy of ν is infinite. See [2] for a discussion of cases, where ν is
determinate but x dν(x) is indeterminate.

We calculate some further values of the transformation T .

Example 3.1 For a > 0 we have the following normalized Hausdorff moment
sequence

an =
a

a + n
= a

∫ 1

0

xa+n−1 dx.

The corresponding Stieltjes moment sequence is

sn =
(a + 1) · . . . · (a + n)

an
,

and therefore
sn(a) := (a + 1) · . . . · (a + n), s0(a) := 1

14



is likewise a Stieltjes moment sequence, which can be written sn(a) = (a + 1)n

using the Pochhammer symbol.
The sequence (sn(a)) gives the moments of the Gamma distribution with

density (1/Γ(a+1))xa exp(−x) for x > 0, so (sn(a)) is in fact a Stieltjes moment
sequence for any a > −1. Note that (sn(a)) /∈ T (H∗) for −1 < a ≤ 0.

Example 3.2 The Stieltjes moment sequence (sn) from Lemma 2.6 is again a
normalized Hausdorff moment sequence, because the representing measure is sup-
ported by [0, 1], see also Corollary 2.10. Therefore we can apply T to this sequence
and get

T [(sn)]n =
n−1∏
k=0

(1 + c1q1
k + · · ·+ cpqp

k)n−k, n ≥ 1. (18)

In particular, for c > 0, 0 < q < 1 we have that

sn =
n−1∏
k=0

(1 + cqk)n−k, n ≥ 1 (19)

is a Stieltjes moment sequence.
We shall give the representing measure for the Stieltjes moment sequence (18).

To do this we consider the entire function of p complex variables

g(z1, . . . , zp) =
∞∏

k=0

(1 + z1q1
k + · · ·+ zpqp

k)k.

The power series expansion of g can be written

g(z) = g(z1, . . . , zp) =
∑

α

dαzα,

where we use the multi-index notation as in the proof of Lemma 2.6. The coeffi-
cients dα = dα(q) of the power series are positive as sums of products of powers
of q1, . . . , qp.

For γ > 0 and c1, . . . , cp > 0 we consider the probability measure

µγ,c =
1

g(c1, . . . , cp)

∑
α

dαcαδγqα ,

which is concentrated on the interval [0, γ].
The n’th moment of µγ,c is

sn(µγ,c) =
1

g(c)

∑
α

dαcα(γqα)n = γn g(c1q1
n, . . . , cpqp

n)

g(c1, . . . , cp)
,
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which can be written

sn(µγ,c) =
γn∏n−1

k=0(1 + c1q1
k + · · ·+ cpqp

k)k

(
∞∏

k=0

(1 + c1q1
n+k + · · ·+ cpqp

n+k)

)−n

.

With

γ =
∞∏

k=0

(1 + c1q1
k + · · ·+ cpqp

k)

we get that (sn(µγ,c)) is the moment sequence (18).
In particular for p = 1, c > 0 we get that

µ(−c;q)∞,c =
1

g(c)

∞∑
α=0

dαcαδ(−c;q)∞qα , (20)

has the moments (19), where

g(z) =
∞∏

k=0

(1 + zqk)k =
∞∑

α=0

dαzα.

Notice that the moment sequence (19) converges to the sequence

(1 + c)(
n+1

2 )

when q → 1, which is the log-normal moment sequence for the base q = 1/(1+c),
cf. Example 2.4. Weak accumulation points of the measures µ(−c;q)∞,c, cf. (20),
for q → 1 will therefore be solutions to this log-normal moment sequence.

Example 3.3 Let 0 < q < 1 and let (an) be the Hausdorff moment sequence

an =
1

log(1/q)

1− qn

n
=

1

log(1/q)

∫ 1

q

xn dx

x
, n ≥ 1.

(Notice that the right-hand side is 1 for n = 0.) The Stieltjes moment sequence
(log(1/q))−nT [(an)]n is sn = n!/(q; q)n. This is a determinate moment sequence,
and it corresponds via Corollary 1.6 to the Bernstein function f(s) = 1− qs. The
corresponding measure was found in [10] and has the density

i(x) =
∞∑

k=0

exp(−xq−k)
(−1)kq(

n
2)

(q; q)∞(q; q)k

.

See [10] for references to work on DNA-duplication and on Transmission Con-
trol Protocols, where this density also appears, and [3] for an analytical study.
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Example 3.4 Let (an) be a non-vanishing Hausdorff moment sequence of a mea-
sure µ, and let p(x) =

∑m
j=0 cjx

j be a polynomial with positive coefficients or more
generally a polynomial which is non-negative on the interval [0, 1].

Then

ãn =

∫ 1

0

xnp(x) dµ(x) =
m∑

j=0

cjan+j

is a new Hausdorff moment sequence and this leads to the following Stieltjes
moment sequence

sn =
n∏

k=1

(
m∑

j=0

cjak+j

)−1

.

Taking e.g. p(x) = 1± x we get that

sn =
n∏

k=1

1

ak + ak+1

, sn =
n∏

k=1

1

ak − ak+1

are Stieltjes moment sequences.
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