
ABSTRACT STEINER POINTS FOR CONVEX POLYTOPES
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Let &d denote the set of all convex polytopes, degenerate or not, in ^-dimensional
Euclidean space Ed. An abstract Steiner point for convex polytopes in Ed is a mapping
S:2Pd-+Ed satisfying

S(P+Q) = S(P) + S(Q) for all P, Qe0*, (1)

addition on the left being Minkowski addition of convex sets, and

S{a(P)) = o{S(P)) (2)

for all Pe&*d and all similarity transformations a in Ed. (A similarity means any
composition of dilatations and isometries.)

In the present paper we shall characterize the abstract Steiner points for convex
polytopes in two and three dimensions. As a simple consequence of this characteri-
zation we find that an abstract Steiner point S for convex polytopes in Ed, d = 2,3,
satisfying S(P) e P for all P e &d, is the usual Steiner point. For the definition and
properties of this point see [3].

For any vertex A of Pe^d
} let V(A) denote the closed convex spherical polytope

in Sd~1, consisting of all outer normal directions for supporting hypeiplanes of P
through A. The external angle u at the vertex A is now defined as u = o)(V(A)),
where a> denotes the normalized surface measure of Sd~1.

Let \i be any mapping from the set "Td~l of closed convex spherical polytopes in
Sd~l to the real numbers satisfying

(3)

whenever V, W, V u Wcf1'1, and the polytopes V and W are without common
interior points,

n(6(V)) = n(V), (4)

for all isometries 8 of S4"1, and

niS"-1) = 1. (5)

The set of all these mappings /J will be denoted by M.
For any /jeMwe define an abstract Steiner point S^ by the formula

SP(P) = Z ^(K04,))pf, (6)

where pt denotes the position vector of the vertex Ah (i = 1,..., n) of Pe^d. For
the proof of (1) and (2) for Ŝ  see [ 3; p. 1296].

Examples of such mappings \i are obtained as follows. Let O denote the set of
functions (j>: [0,1] -* R satisfying

<t>(u + v) = 4>{u)+<t>(v) (7)
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whenever w, v, u + ve [0,1], and

= 1. (8)

For any (j> e <D we obtain a mapping ^ e M by putting

and consequently an abstract Steiner point

j^fa)** (9)

where as before the uK (i = 1, ..., n) denote the external angles. If 0 is the identity,
iŜ , is the usual Steiner point.

THEOREM 1. Let S be an abstract Steiner point for convex poly topes in Ed,
d = 2, 3. Then there exists a unique $ e O such that S = S^.

Proof. The uniqueness follows if one considers a right triangle. The proof of
the existence is divided into two parts.

Case \,d = 2

Notice that the value of an abstract Steiner point at a segment is the midpoint.
We can now conclude that two abstract Steiner points Sx and S2 are identical if
they coincide on the set of right triangles. Indeed, an interior altitude of a triangle
divides the triangle into two right triangles, the sum of which equals the sum of the
triangle and the altitude. This implies that SL and S2 take the same values for all
triangles, and hence for all convex polygons, because every convex polygon is
expiessible as a sum of segments and triangles.

By &~u we denote the set of right triangles with external angles w, i , f—w,
we]i>4"[- As any two triangles from « "̂u can be mapped onto one another by
similarity transformations, there exists precisely one triple
such that

« ) = l , (10)
and

S(T) = 01(«)p1+02(w)p2+03(«)P3 (11)

for all T e&~u, p l s p2, p3 being position vectors for the vertices of T corresponding
to the exterior angles u, %, f—u.

Now choose a T e ^ a such that the foot of the altitude H to the hypotenuse is
situated at the origin. The altitude H divides T into two triangles Tlt T2e&~u,
and we know that

T+H = Ti + Tz.

If p l 5 p 2 ,p 3 denote position vectors for the vertices of T corresponding to the
external angles w,^,f—u, this relation gives

= <£l(«) Pi +03(«) P2 +0l(«) P2 +4>i(u) p3,
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which implies that

From this and (10) we obtain

Moreover, for reasons of symmetry, we have

We have now proved that
There exists a mapping $ 1 : ] i , i [ -* R sucn that, for all

S(T) = 01 f-0i(!-w)P3> (12)

Pi,p2,P3 being position vectors for the vertices of Tcorresponding to the external
angles «,£,£—u. Moreover, $x satisfies $i(w)+$i(£—«) = I; in particular ^>1(f) = f.

We next prove that 0 t satisfies the functional equation

whenever u, v, u+v—
Suppose that u, v,

(13)

The figure shows a right triangle T = A± A2AZG3TU+V_i, which is divided into
three right triangles Tue2Tu, Tve&~v, Ve^'u+v-i, such that the external angles
at Ax for the triangles T, Tu, Tv are respectively u + v-%, u, v. The origin of the
plane is chosen to be A5, and if we let p( denote position vectors for the points
Ah i = l,. . . , 4, we have

[0,P l ]+[0,p4]= Tu+Tv+T'.

such that
Substituting (12) in the analogous expression for S, we obtain (13).

We now claim that ^>t is the restriction to ]%,%[ of a function

To see this, define <£': ]0,H -> R by

- « ) for
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From (13) it follows that <£' satisfies the functional equation

<jf>'(u + v) = $'(«) 4- (j)'(v), whenever u, v, u + v e ]0, ^[.

Furthermore <£'(£) = £. This function (f>' can be extended in a unique way to a
function </>eO, and we shall check that 4> = <f>x in ]£,£[. For we ]£,•£[ we have

To this <$> e 0 we construct by (9) the abstract Steiner point S^, and (12) tells us that
S and Sf take on the same value for right triangles. This is sufficient to ensure that

Case 2,d = 3

We first assert that two abstract Steiner points Sx and S2 are identical, if they
coincide on all convex polygons in E3. To see this, let P be a three-dimensional
convex poly tope with j-faces P/,i = 1, . . . , . /} , where fi is the number of ;-faces
j = 0, 1, 2. The reflection of P in the origin is denoted by P. The following formula,
which is due to G. C. Shephard [5; p.600],

shows that St(P) = S2(P).
Let 7r denote an arbitrary plane containing the origin. If P is a convex polygon

in n, we have S(P) e n because P is invariant under the reflection in n. Therefore
the restriction S* of S to n is an abstract Steiner point in n, and the previous dis-
cussion shows that S* = S^ for a 0 eO. However, the external angle at a vertex is
independent of the dimension of the space in which the poly tope is considered, so
that S and S^ coincide on convex polygons in n. This, however, extends to all convex
polygons in E3, and hence by the first remark we have S = S^.

Remark. Theorem 1 implies that any ju e M can be written in the form n = 4> o co
with a unique cj) e <D if d equals 2 or 3. This result is well known, and it is known too
that it does not extend to higher dimensions. These problems are treated in the
simpler case of Euclidean space in the monograph of H. Hadwiger [1; chapter 2].
Thus our theorem cannot be extended to dimensions higher than three. We do not
know whether (6) gives the most general abstract Steiner point in this case.

It is well known that $ e O is continuous, and is then the identity, if $ is bounded
in some subinterval of [0,1]. Under this assumption S^ is the usual Steiner point.
However, if S is an abstract Steiner point which is bounded on the set of convex
polytopes in the unit ball, it is not difficult to see that the corresponding (j> e <D is
bounded on a suitable subinterval of [0,1]. This proves the following theorem.

THEOREM 2. Let S be an abstract Steiner point for convex polytopes in Ed,
d = 2, 3, and suppose that S is bounded on the set of polytopes in the unit ball. Then
S is the usual Steiner point.

Remark. The boundedness condition of the theorem is fulfilled if S satisfies the
geometrically natural condition S(P)e P for all P e &d.

Let %ld denote the set of convex bodies in Ed topologised by the Hausdorff metric.
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THEOREM 3. Let S : <tfd -» Ed, d = 2, 3, be any mapping which satisfies

(a) S(K + L) = S(K) + S(L) for all K, Le%d,

(b) S(o(Kj) = o(S(K)) for all Ke<#d and all similarity transformations a in Ed,

(c) S is continuous.

Then S is the Steiner point.

Proof The Steiner point itself is a continuous mapping from # d to Ed {cf [3]),
so it suffices to show that it coincides with S on the dense subset &d of (&d. This,
however, follows from theorem 2 because S is bounded on the compact set of convex
bodies in the unit ball.

Theorem 3 contains the uniqueness theorem of Shephard in [4] and its general-
ization to three dimensions. K. A. Schmitt's paper [2] which generalizes the unique-
ness theorem of Shephard to all dimensions is insufficient, because the proof of (11)
on p. 390 is incomplete.
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