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SHEPHARD’S APPROXIMATION THEOREM
FOR CONVEX BODIES AND THE MILMAN THEOREM

CHRISTIAN BERG

In [4] G. C. Shephard proved an interesting approximation theorem
concerning indecomposable convex polyhedra in the ¢-dimensional space
Re (cf. p. 23 of the present paper).

The purpose of the present paper is to give a new proof of this theorem.
First we find a correspondence between the set of homothety classes
of convex bodies in R? and a compact convex set in the Banach space
C(£2,) of continuous functions on the unit sphere £, in R? such that the
indecomposable classes correspond to the extreme points of this compact
convex set. We next show that Shephard’s approximation theorem is
a consequence of Milman’s theorem, valid for a compact convex set
in a locally convex topological vector space [3, p. 9]. Our proof yields
that Shephard’s theorem is true not only for a indecomposable poly-
hedron but for any indecomposable convex body in R4.

Chapter 15 in the monograph [2] deals with the notion of decom-
posable and indecomposable polyhedra and the approximation theorem
of G. C. Shephard.

Let €, denote the class of all convex bodies in R? consisting of more
than one point. If K,Le %, and 1>0, we have

K+Le¥, and AlKe%,.
We consider %, as a metric space under the Hausdorff-distance
DK,L) = inf{e>0| KcL+c¢E, LcK+¢eB},

where B, is the unit ball in R% For each K €%, let h(K) denote the
supporting function of K. We consider 2(K) as an element of the Banach
space (C(£2,) of continuous real-valued functions defined on the unit
sphere Q, in RZ, equipped with the uniform norm. It is well known
that the mapping A: K — h(K) of €, into O(£2,) is one-to-one and satis-
fies (cf. [1])

(1) WK +L) = MEK)+ML), hAK)=IK) for 1>0,
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(2) D(K,L) = |[MK)—hL)| .
For K € %, one defines the Steiner-point S(K) of X [2, p. 314] by

S(K) = Hj—” [enm)e) doye)
q 'Qp
and the mean width B(K) of K [1, p.50] by
BE) = o [HE)E) don)
lodl )

where o, denotes the usual surface measure on £, with total mass |jw,].
Note that S(K)e K and that B(K)>0. The mappings S:%,—~ Re
and B:%,— R are both continuous and satisfy the linearity relations
analogous to (1). Moreover S commutes with rigid motions, whereas
B is invariant under rigid motions.

We shall consider the subset 4 of %, defined by

A ={Ke%,| S(K)=o0, BK)=1},

where o denotes the origin of R?, and the corresponding set A(4) of
supporting functions. From the above remarks it is obvious that 4
is a closed subset of ¥, with the property that if K,L € 4 and A€ [0,1],
then AK +(1—-A)L e A.

THEOREM 1. The subset A of €, is compact, and h is a homeomorphism
of A onto M(A), which is a compact convex set in C(8,).

Proor. For any convex body K € A and any point ¢ € K the segment
[0,a] belongs to K since o € K. Thus B([o,a])<B(K)=1. Since
2 [jwg—il llel
lleogll (= 1)
llel| and hence A4 is bounded. The selection theorem of Blaschke yields
the compactness of 4, and the proof is completed by (1) and (2).

B([o,a]) =

A convex body K €%, is called decomposable if there exist convex
bodies L, M € €,, non-homothetic to K, such that K=L+ M. If this
is not the case, K is called indecomposable.

It is obvious that if K,L € %, are homothetic, then K is decomposable
if and only if L is decomposable. Further, for any K € €, there exists
a unique pair (4,a), where 4> 0, @ € RY, such that A-1(K —a) € 4, namely
A=B(K), a=_8(K).
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The supporting function of A-1(K —a) is denoted #(K) and is called
the normalized supporting function of K. For K € €, and & € 2, we have

n(K)(€) = B(K)(A(K)(E) — S(K)-&) .

The normalized supporting function #(K) lies in the compact convex
set h(4), and for K,L € €, we have n(K)=n(L) if and only if K and L
are homothetic. The mapping %: %, > h(A4) is continuous.

THEOREM 2. Let K €%,. Then K is indecomposable iof and only if the
normalized supporting function n(K) is an extreme point of the compact
convex set h(4).

Proor. It suffices to prove the theorem for a K € A, that is, when
n(K)=h(K).

Suppose that K is decomposable. Then we have a decomposition
K=L+M with L, M € ¢,, and n(K) is different from »(L) and n(M).
It follows that

n(K) = B(L)n(L) + B(M)n(M) and 1= B(L)+ B(M),

which show that 7(K) is not an extreme point of A(A4).
Conversely, if 7(K) is not extreme in A(4), we can find L, M € 4
different from K and 4 with 0<A<1 such that

n(K) = An(L) + (1-2)n(M) .
Since K, L, M € A, we have
WMK) = Ah(L)+ (1 —A)WM) = AL+ (1 —-2)M),

and consequently
K=AL+(1-A)M,

which shows that K is decomposable.

In the following let "< %, be a class of convex bodies stable under
homothety, that is, if K e X", then AK+a e X for all A>0, ae R,
Call a convex body L € €, approximable by such a class if there exist
convex bodies K;+...+K,, where K;e€ 4, arbitrarily near to L in
the Hausdorff-distance.

LemMMA 1. Let A <€, be a class of convex bodies stable under homothety,
and let Le €, Then L is approximable by the class A" if and only if

n(L) € clconv y(X'),
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where cl conv n(A") denotes the closed convex huil of the subset {n(K) | K € A"}
of h(4

Proor. Suppose that there exists a sequence K, €%, such that
K, L in %,, and such that

=> K, where K eX .

i=1

We then have #(K,) - n(L) in h(A) (uniformly over 2,) and
z B -1 B Ki ) T/(I(‘Ln) )

which is a convex combination of #(K?%,), i=1,...,¢,. This proves
n(L) € clconv n(X') .

Conversely, if this relation is satisfied there exist convex bodies

Kt e and numbers 2°,>0, i=1,...,4,, n=1,2,..., such that
in
>, =1
i=1

and

zm Ki) > n(L) in h(4).

=1

Since " is stable under homothety, the bodies K?, can be chosen such
that K?, € A, that is, h(K?,)=n(K?%,). Thus we get

5 ( ‘iz"lzfnzﬁn) R (B(L)—l (L—S(L))) in h(4),
which by theorem 1 implies that
'iznllinK"n - BL)"Y(L-S8(L)).
Consequently L is approximable by the class % .
If we let "%, be the class of all indecomposable convex bodies,

lemma 1 combined with the Krein-Milman theorem yields the following
result:

THEOREM 3. Every convex body L € €, can be approximated arbitrarily
well by sums of indecomposable convex bodies.
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As a consequence of lemma 1 combined with the Milman theorem,
we get:

TaEOREM 4. Let "= %, be a class of convex bodies stable under homothety.
If an indecomposable convex body L € €, is approximable by the class A,
then LeclX .

Proor. By lemma 1 we have
n(L) € el conv y(KX),

and 7(L) must be an extreme point of cl conv %(X"), because it is ex-
treme in h(A4). Thus by the Milman theorem we get n(L) e cl y(X),
and the proof is easily completed by means of theorem 1.

It is straightforward to see that theorem 4 implies Shephard’s ap-
proximation theorem:

Let €={Ke%,|S(K)=0,diamK=1}, and let A<= be a closed
subset. If Pe® is an indecomposable polyhedron, and if P can be
approzimated arbitrarily well by convex bodies K € € of the form K=

v MK, where Kye Ay, 4,>0, then P e Xy,.

We point out that theorem 3 does not tell anything new. It is well
known that any convex body K € €,, can be approximated by a convex
polygon, and every convex polygon is a sum of segments and triangles,
which are known to be indecomposable. For ¢ =3 the indecomposable
convex bodies are even dense in %,, because every convex simplicial
polyhedron (that is, a polyhedron the (¢ — 1)-dimensional facets of which
are simplices) is indecomposable [4, lemma 23]. For ¢=3 theorem 4
therefore has the consequence that if 2"c%, is a class stable under
homothety, closed as a subset of %, and universally approximating,
that is, every convex body L € %, can be approximated by 2, then
H =€, (cf. [3, theorem 22]).

For g=2 the class & <%, consisting of all segments and triangles is
closed in %,, stable under homothety and universally approximating.
By theorem 4 the class " contains every indecomposable convex body
so that the indecomposable plane convex bodies are precisely the seg-
ments and the triangles.

For ¢=3 no exhaustive classification of the indecomposable convex
bodies seems to be known. As an example of an indecomposable convex
body in R3, which is not a polyhedron, one could mention a cone.
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