On the Support of the Measures in a Symmetric Convolution Semigroup

Christian Berg

Matematisk Institut, Universitetsparken 5, DK-2100 KøbenhavnØ, Denmark

The aim of the present paper is to prove the following result: Let $(\mu_t)_{t>0}$ be a vaguely continuous convolution semigroup consisting of symmetric probability measures on a locally compact abelian group G. Then there exists a closed subgroup H of G such that $\sup(\mu_t) = H$ for all t > 0.

Mathematische

Zeitschrift © by Springer-Verlag 1976

As a consequence of this result we get that the support of a symmetric infinitely divisible distribution in \mathbb{R}^n is a closed subgroup of \mathbb{R}^n .

Preliminaries. For a locally compact space X we denote by $C_c(X)$ the set of continuous complex-valued functions on X with compact support. For a Radon measure μ on X we denote by supp (μ) the support of μ and sometimes we use the more detailed notation supp_x(μ) in order to avoid confusion.

The restriction of a Radon measure μ on X to a Borel subset Y of X is denoted $\mu \mid Y$.

A net $(\mu_i)_{i \in I}$ of Radon measures on X is said to converge vaguely to a Radon measure μ on X if

$$\lim_{I} \langle \mu_i, f \rangle = \langle \mu, f \rangle \quad \text{for all } f \in C_c(X).$$

In the following G denotes a locally compact abelian group and the dual group of G is denoted Γ . Concerning the Fourier analysis on G we use the notation from the book of Rudin [7]. It is convenient to put $G' = G \setminus \{0\}$, and for a subset $A \subseteq G$ we denote by G(A) the smallest closed subgroup of G which contains A.

For probability Radon measures μ_1 and μ_2 on G we have

$$supp (\mu_1 * \mu_2) = cl (supp (\mu_1) + supp (\mu_2)).$$

By a (vaguely continuous) convolution semigroup on G we mean a family $(\mu_t)_{t>0}$ of Radon probability measures on G satisfying

 $\mu_t * \mu_s = \mu_{t+s}$ for t, s > 0, (1)

$$\lim_{t \to 0} \mu_t = \varepsilon_0 \qquad \text{vaguely.} \tag{2}$$

To every convolution semigroup $(\mu_t)_{t>0}$ on G is associated a continuous negative definite function¹ $\psi: \Gamma \to \mathbb{C}$ satisfying $\psi(0) = 0$ such that

$$\hat{\mu}_t(\gamma) = e^{-t\psi(\gamma)} \quad \text{for } t > 0 \quad \text{and} \quad \gamma \in \Gamma,$$
(3)

cf. [2] or [4], and to every continuous negative definite function $\psi: \Gamma \to \mathbb{C}$ satisfying $\psi(0)=0$ is associated a convolution semigroup $(\mu_t)_{t>0}$ on G such that (3) holds.

A convolution semigroup $(\mu_t)_{t>0}$ is symmetric (i.e. μ_t is symmetric for all t>0) if and only if the associated negative definite function ψ is real.

For a convolution semigroup $(\mu_t)_{t>0}$ on G the Lévy measure μ is the non-negative measure on $G' = G \setminus \{0\}$ defined as the vague limit

$$\mu = \lim_{t \to 0} \frac{1}{t} (\mu_t \mid G').$$
(4)

The Lévy measure has the following properties, cf. [2],

$$\int_{G'} \operatorname{Re}\left(1-(x,\gamma)\right) d\mu(x) < \infty \quad \text{for all } \gamma \in \Gamma,$$
(5)

and

$$\mu(G \smallsetminus V) < \infty \tag{6}$$

for all compact neighborhoods V of 0 in G.

Proposition 1. (Cf. [2], Lemma 18.18). Let μ be a non-negative symmetric measure on G' such that

$$\psi(\gamma) := \int \operatorname{Re} \left(1 - (x, \gamma)\right) d\mu(x) < \infty \quad \text{for all } \gamma \in \Gamma.$$

Then ψ is a continuous negative definite function on Γ and the associated convolution semigroup $(\mu_t)_{t>0}$ on G has Lévy measure μ .

A convolution semigroup is said to be of *local type*, cf. [5], if the Lévy measure vanishes.

A convolution semigroup of the type encountered in Proposition 1 is said to be *without local component*.

A continuous function $q: \Gamma \to \mathbb{R}$ is called a *quadratic form* (cf. [6]) if

$$q(\gamma + \delta) + q(\gamma - \delta) = 2q(\gamma) + 2q(\delta) \quad \text{for } \gamma, \delta \in \Gamma.$$
(7)

A quadratic form is easily seen to have the following properties

$$q(0)=0 \text{ and } q(n\gamma)=n^2 q(\gamma) \text{ for } n \in \mathbb{Z} \text{ and } \gamma \in \Gamma.$$
 (8)

A non-negative quadratic form is negative definite and the associated convolution semigroup is symmetric and of local type. Conversely, if $(\mu_t)_{t>0}$ is a symmetric convolution semigroup of local type, then the associated continuous negative definite function is a non-negative quadratic form.

¹ A function $\psi: G \to \mathbb{C}$ defined on an abelian group G is called *negative definite* if for every natural number n and for every n-tuple (x_1, \ldots, x_n) of elements from G the matrix $(\psi(x_i) + \overline{\psi(x_j)} - \psi(x_i - x_j))$ is non-negative hermitian

Proposition 2. (Cf. [2], Corollary 18.20, or [6]). Let $(\mu_t)_{t>0}$ be a symmetric convolution semigroup on G with associated continuous negative definite function ψ on Γ . Then there exists a non-negative quadratic form q on Γ and a non-negative symmetric measure μ on G' such that

$$\psi(\gamma) = q(\gamma) + \int_{G'} \operatorname{Re} \left(1 - (x, \gamma)\right) d\mu(x) \quad \text{for } \gamma \in \Gamma.$$

The function q is determined as

$$q(\gamma) = \lim_{n \to \infty} \frac{\psi(n\gamma)}{n^2} \quad for \ \gamma \in \Gamma,$$

and μ is the Lévy measure for $(\mu_t)_{t>0}$.

Corollary 3. Let $(\mu_t)_{t>0}$ be a symmetric convolution semigroup on G. Then there exists a symmetric convolution semigroup $(\mu'_t)_{t>0}$ of local type and a symmetric convolution semigroup $(\mu''_t)_{t>0}$ without local component such that

 $\mu_t = \mu'_t * \mu''_t$ for t > 0.

Proof. With the notation from Proposition 2 we let $(\mu'_t)_{t>0}$ be the convolution semigroup associated with q and $(\mu''_t)_{t>0}$ the convolution semigroup associated with

$$\psi_1(\gamma) = \int_{G'} \operatorname{Re} \left(1 - (x, \gamma)\right) d\mu(x) \quad \text{for } \gamma \in \Gamma.$$

The Main Result. The aim of this paper is to prove the following result.

Theorem 4. Let $(\mu_t)_{t>0}$ be a symmetric convolution semigroup on a locally compact abelian group G. Then there exists a closed subgroup H of G such that supp $(\mu_t) = H$ for all t > 0.

The symmetry condition is essential for the validity of the result as the example of a translation semigroup shows.

Corollary 5. Let μ be a symmetric infinitely divisible distribution on \mathbb{R}^n . Then supp (μ) is a closed subgroup of \mathbb{R}^n .

The corollary follows immediately from Theorem 4, because there exists a symmetric convolution semigroup $(\mu_t)_{t>0}$ on \mathbb{R}^n such that $\mu = \mu_1$, cf. e.g. [1], p. 278.

Proof of Theorem 4. By Corollary 3 it suffices to prove the theorem for convolution semigroups without local component and for convolution semigroups of local type, and this is done in Propositions 8 and 9 below. \Box

We need the following lemmas.

Lemma 6. Let X be a locally compact space and $(\mu_i)_{i \in I}$ a net of Radon measures on X converging vaguely to a Radon measure μ on X. Then

$$\operatorname{supp}(\mu) \subseteq \overline{\bigcup_{i \ge i_0} \operatorname{supp}(\mu_i)} \quad \text{for all } i_0 \in I.$$

The proof is straightforward.

Lemma 7. Let $(\mu_t)_{t>0}$ be a symmetric convolution semigroup on G with Lévy measure μ . Then we have

- (i) $0 \in \text{supp}(\mu_t)$ for all t > 0,
- (ii) supp $(\mu_t) \subseteq$ supp (μ_s) for $t \leq s$,
- (iii) $G(\operatorname{supp}_{G'}(\mu)) \subseteq \operatorname{supp}(\mu_t)$ for all t > 0.

Proof. We have $\mu_t = \mu_{t/2} * \mu_{t/2}$ and supp $(\mu_{t/2})$ is symmetric, and it follows that

 $\operatorname{supp}(\mu_t) \supseteq \operatorname{supp}(\mu_{t/2}) + \operatorname{supp}(\mu_{t/2}) = \operatorname{supp}(\mu_{t/2}) - \operatorname{supp}(\mu_{t/2}) \ni 0,$

and therefore

 $\operatorname{supp}(\mu_{t+s}) \supseteq \operatorname{supp}(\mu_t) + \operatorname{supp}(\mu_s) \supseteq \operatorname{supp}(\mu_s),$

thus proving (i) and (ii). Using (4) it follows from Lemma 6 that

$$\operatorname{supp}_{G'}(\mu) \subseteq \operatorname{cl}_{G'}(\bigcup_{s \leq t} \operatorname{supp}_{G'}(\mu_s | G')) \quad \text{for all } t > 0,$$

but since $\operatorname{supp}_{G'}(\mu_s | G') \subseteq \operatorname{supp}(\mu_s)$ for s > 0, we get by (ii) that

 $\operatorname{supp}_{G'}(\mu) \subseteq \operatorname{supp}(\mu_t)$ for all t > 0.

For $n \in \mathbb{N}$ and t > 0 we then find

 $(\operatorname{supp}_{G'}(\mu))^n \subseteq (\operatorname{supp}(\mu_{t/n}))^n \subseteq \operatorname{supp}(\mu_t),$

and finally

$$G(\operatorname{supp}_{G'}(\mu)) = \operatorname{cl}(\{0\} \cup \bigcup_{n=1}^{\infty} (\operatorname{supp}_{G'}(\mu))^n) \subseteq \operatorname{supp}(\mu_i)$$

for all t > 0. \square

Proposition 8. Let μ be a non-negative symmetric measure on G' such that

$$\psi(\gamma) := \int_{G'} \operatorname{Re} \left(1 - (x, \gamma) \right) d\mu(x) < \infty \quad \text{for all } \gamma \in \Gamma_{\gamma}$$

and let $(\mu_t)_{t>0}$ be the symmetric convolution semigroup on G associated with ψ . Then we have

 $\operatorname{supp}(\mu_t) = G(\operatorname{supp}_{G'}(\mu)) \quad for \ all \ t > 0.$

Proof. Let V denote the set of compact symmetric neighborhoods of 0 in G. For $V \in V$ we put

$$\psi_{V}(\gamma) = \int_{G \setminus V} \operatorname{Re}\left(1 - (x, \gamma)\right) d\mu(x) \quad \text{for } \gamma \in \Gamma,$$

and from Proposition 1 we know that ψ_V is a continuous negative definite function. The associated convolution semigroup is denoted $(\mu_t^V)_{t>0}$.

It is clear that $\psi_V \leq \psi$ and for V_1 , $V_2 \in \tilde{V}$ such that $V_1 \subseteq V_2$ we have $\psi_{V_2} \leq \psi_{V_1}$. For every $\gamma \in \Gamma$ we have

$$\sup_{\dot{V}}\psi_V(\gamma)=\psi(\gamma),$$

(cf. [3], Théorème 1, p. 107), and it follows by Dini's Theorem that the net $(\psi_V)_{V \in V}$ converges to ψ uniformly over compact subsets of Γ . For t > 0 we then have

$$\lim_{\dot{v}} \hat{\mu}_t^{V}(\gamma) = \lim_{\dot{v}} e^{-t\psi_{V}(\gamma)} = e^{-t\psi(\gamma)} = \hat{\mu}_t(\gamma)$$

uniformly over compact subsets of Γ , and by the continuity theorem for the Fourier transformation, cf. [2], Theorem 3.13, it follows that

$$\lim_{t} \mu_t^V = \mu_t \quad \text{vaguely for } t > 0. \tag{9}$$

For $V \in \hat{V}$ we define $\mu_V = \mu | (G \setminus V)$, and it follows by (6) that the total mass a_V of μ_V is finite. We therefore get

$$\psi_V(\gamma) = \int \operatorname{Re}\left(1 - (x, \gamma)\right) d\mu_V(x) = a_V - \hat{\mu}_V(\gamma) \quad \text{for } \gamma \in \Gamma,$$

and consequently

$$e^{-t\psi_{\mathcal{V}}(y)} = e^{-ta_{\mathcal{V}}} e^{t\hat{\mu}_{\mathcal{V}}(y)}$$
 for $y \in \Gamma$ and $t > 0$,

and it follows that

$$\mu_t^V = e^{-ta_V} \sum_{n=0}^{\infty} \frac{t^n}{n!} \mu_V^n \quad \text{for } t > 0,$$
(10)

where μ_V^n is the *n*'th convolution power of μ_V and $\mu_V^0 = \varepsilon_0$.

From (10) we get

$$\operatorname{supp}(\mu_t^{\nu}) = \operatorname{cl}\left(\bigcup_{n=0}^{\infty} \operatorname{supp}(\mu_{\nu}^n)\right) = G(\operatorname{supp}(\mu_{\nu})) \quad \text{for } t > 0,$$

and in particular

$$\operatorname{supp}(\mu_t^V) \subseteq G(\operatorname{supp}_{G'}(\mu)) \quad \text{for } t > 0 \quad \text{and} \quad V \in \dot{V}$$

An application of Lemma 6 to (9) yields that

$$\operatorname{supp}(\mu_t) \subseteq G(\operatorname{supp}_{G'}(\mu)) \quad \text{for } t > 0,$$

which together with Lemma 7 (iii) show that

 $\operatorname{supp}(\mu_t) = G(\operatorname{supp}_{G'}(\mu))$ for t > 0.

Proposition 9. $(\mu_t)_{t>0}$ be a symmetric convolution semigroup of local type on G. Then there exists a closed connected subgroup $H \subseteq G$ such that $\operatorname{supp}(\mu_t) = H$ for all t>0. The subgroup H is equal to $\{\gamma \in \Gamma \mid q(\gamma) = 0\}^{\perp}$, where q is the continuous negative definite function associated with $(\mu_t)_{t>0}$.

Proof. Let H be the smallest closed subgroup of G which contains supp (μ_t) for all t > 0, and let q be the continuous negative definite function associated with $(\mu_t)_{t>0}$. We know that q is a non-negative quadratic form. By Proposition 8.27 in [2] we have

$$H^{\perp} = \{\gamma \in \Gamma \mid q(\gamma) = 0\}$$
 and $H = \{\gamma \in \Gamma \mid q(\gamma) = 0\}^{\perp}$.

Let t > 0 be fixed. We claim that μ_t is a *Gaussian measure* on *H* in the sense of Urbanik [8], and by the results of [8] it then follows that supp $(\mu_t) = H$, and that *H* is a connected group.

We shall prove:

1) There exists a convolution semigroup $(\sigma_s)_{s>0}$ on H such that $\sigma_1 = \mu_t$.

This is clear by taking $\sigma_s = \mu_{ts} | H$ for s > 0.

2) For every non-trivial character χ on H the image measure $\chi(\mu_t)$ of μ_t under $\chi: H \to \mathbb{T}$ is a normal measure on \mathbb{T} .

Let χ be a non-trivial character on *H*. Then there exists a character $\gamma \in \Gamma \setminus H^{\perp}$ such that the restriction of γ to *H* is equal to χ . The Fourier transform of the measure $\chi(\mu_t)$ is a function on \mathbb{Z} , which for $n \in \mathbb{Z}$ has the value

$$\widehat{\chi(\mu_t)}(n) = \widehat{\gamma(\mu_t)}(n) = \widehat{\mu}_t(n\gamma) = e^{-tq(n\gamma)} = e^{-tq(\gamma)n^2},$$

and since $q(\gamma) > 0$ for $\gamma \in \Gamma \setminus H^{\perp}$ it follows by [8] that $\chi(\mu_t)$ is a normal measure on **T**.

Remark. Let $(\mu_t)_{t>0}$ be a symmetric convolution semigroup on G. It follows by the previous results that we have the following expression for supp (μ_t) :

$$\operatorname{supp}(\mu_t) = \operatorname{cl}\left(\{\gamma \in \Gamma \mid q(\gamma) = 0\}^{\perp} + G(\operatorname{supp}_{G'}(\mu))\right) \quad \text{for } t > 0$$

Here q is the quadratic form determined from the associated continuous negative definite function ψ by

$$q(\gamma) = \lim_{n \to \infty} \frac{\psi(n\gamma)}{n^2}$$
 for $\gamma \in \Gamma$,

and μ is the Lévy measure.

References

- 1. Bauer, H.: Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie, 2. Auflage. Berlin-New York: Walter de Gruyter 1974
- 2. Berg, C., Forst, G.: Potential theory on locally compact abelian groups. Berlin-Heidelberg-New York: Springer 1975
- 3. Bourbaki, N.: Intégration. Chapitres 1-4, 2e édition, Paris: Hermann 1965
- 4. Deny, J.: Méthodes hilbertiennes en théorie du potentiel. In: C.I.M.E., 1°Ciclo, Potential Theory (Stresa 1969), pp. 121-201. Rome: Edizione Cremonese 1970
- 5. Forst, G.: Convolution semigroups of local type. Math. Scandinav. 34, 211-218 (1974)
- Harzallah, K.: Sur une démonstration de la formule de Lévy-Khinchine. Ann. Inst. Fourier, 19 (Fasc. 2), 527-532 (1969)
- 7. Rudin, W.: Fourier analysis on groups. New York: Interscience 1962
- Urbanik, K.: Gaussian measures on locally compact abelian topological groups. Studia. math. 19, 77-88 (1960)

Received November 7, 1975