
FROM LECTURE 1: WELLORDERING PRINCIPLE AND DIVISION WITH

REMAINDER

Why is this document in English? Because it is reasonable to assume that within a few

years, Bachelor level courses at the University of Copenhagen will be taught in English (again). To

avoid having to translate additional course material when this (inevitably) happens, I am going to

write most of my supplementary notes in English. As a further upside, you will get used to reading

math in English, which will be an advantage later on in your studies.

The Wellordering principle. Recall from lecture that

N = {1, 2, 3, 4, . . .}

and that1

N0 = ω = {0, 1, 2, 3, 4, . . .}.

All the ordinary rules of addition and multiplication hold in N and N0, but when forming the

additive inverse (i.e., −x) and the multiplicative inverse (i.e., x−1), we may be falling outside of

these sets and into Z (the integers) or Q (the rationals). (E.g. 5 ∈ N, but −5 /∈ N, and 5−1 ∈ Q
but 5−1 /∈ N.) This is not a usually a huge concern, but if one is trying to solve an equation within

N, say, then this can become a concern.

A key feature of the ordering of the natural numbers is the wellordering principle, also called

the wellordering axiom. (Dansk: Velordningsprincippet eller velordningsaksiomet.) It says the

following:

Wellordering principle: If X ⊆ N0 is a a non-empty (!) set, then X contains a least element.

That is, if X ⊆ N0 is non-empty then there is x ∈ X such that for all y ∈ X we have x ≤ y.

The same holds for N instead of N0, of course. The wellordering principle is a fundamental

assumption about the natural numbers, i.e., it is an axiom in the true sense of the word. It cannot

be proven by appealing to algebraic properties of N, for instance. It must be assumed from the

beginning.

The division with remainder theorem. In lecture, we used the wellordering principle to give

a proof of the following important theorem, called the division with remainder theorem.

Theorem 1. Let a ∈ Z and d ∈ N. Then there are q0 ∈ Z and r0 ∈ N0, with 0 ≤ r0 < d, such

a = dq0 + r0.

Moreover, the q0 and r0 satisfying the above are unique.

1The notation ω for N0 is preferred by mathematical logicians. Mathematicians outside of logic are usually not

accustomed to this use of ω. Also, many mathematicians use N for what we call N0, so beware!
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The wellordering principle is crucial for the proof of this theorem, though its use is somewhat

swept under the rug in the DIS textbook. Nonetheless, you should still read the proof there, since

it may seem a bit more intuitive than what I do here.

Proof of Theorem 1. For simplicity, we shall first give the proof assuming that a > d > 0. We start

by proving a simple claim (dansk: p̊astand), which gets the wellordering principle into play.

Claim. The set M = {q ∈ N : a− dq ≤ 0} is non-empty.

Proof of claim. Since d ≥ 1 by our assumption, it follows that ad ≥ a. So if we let q = a then

a− dq ≤ 0. (Claim)a

Now let q0 ∈M be the least element of M . It suffices to prove that r0 = dq0− a works, i.e., that

0 ≤ r0 < d. For this, first note that q0 > 1, since if q0 = 1 was the case then a − d ≤ 0, whence

a ≤ d, contradicting our assumption that a > d. So suppose then that r0 ≥ d. Then r0 − d ≥ 0,

and so (dq0 − a)− d ≥ 0. This then amounts to

0 ≥ (dq0 − a)− d = d(q0 − 1)− a

from which we get a− d(q0 − 1) ≤ 0. But since q0 > 1 we have q0 − 1 ∈ N, which then contradicts

that q0 was the least natural number such that a− dq0 ≤ 0.

This finishes the proof of the existence part of the theorem, as we have produced q0 and r0 as

required.

For the uniqueness part, suppose that q′ ∈ Z and r′ ∈ N0, with 0 ≤ r′ < d, also satisfy a = dq′+r′.

A simple calculation shows that if q = q′ then r = r′, so we may assume, seeking a contradiction,

that q′ 6= q. Note that dq′ − r′ ≤ 0 and so q′ ∈M , whence by minimality of q0 we have q′ > q0, in

particular, q′ ≥ q0 + 1. It then follows that dq′ ≥ dq0 + d > a, with the last inequality following

since r < d gives a = dq0 + r < dq0 + d. But then dq′ − a > 0, which contradicts that q′ ∈M .

This finishes the proof of the theorem in the case a > d > 0. We leave it as an exercise (see

below) to prove the theorem without this assumption. �

Exercise 1. Use the fact that the division with remainder theorem holds for a > d > 0 to prove

that it holds for all a ∈ Z and d ∈ N.

Exercise 2. On the face of things, the above proof seems very different from the proof of the same

theorem given in the textbook, in particular the existence part. However, a closer look should

reveal that the idea is exactly the same. Explain, in your own words and using everyday language,

what is going on in (the existence part of) the two proofs, and why the idea is actually the same.

(Hint: I suggest that you start by explaining the idea behind Jesper Lützen’s proof, and then use

this to explain the idea behind the above proof.)


