
LECTURE 12: AXIOMATIC SET THEORY

We start with the proof of theorem 2.8 that was left out last time:

Proof of theorem 2.8. First we prove the following:

Claim 2.1. For any β P ON there is a unique function g : β Ñ V (i.e. g is a set) satisfying

(‹β) @α ă β gpαq “ F pg æ αq.

Proof of the claim. Assume otherwise, and let β be the least counterexample. First, assume β is a

successor ordinal, say β “ β̃ ` 1. By minimality of β, there is a unique g̃ : β̃ Ñ V such that (‹β̃)

holds. Letting g “ g̃ Y txβ̃, F pg̃qyu, check that g : β Ñ V satisfies (‹β) and is in fact the unique

such function, contradicting the definition of β.

So we may assume β is a limit ordinal. By assumption, for each β̃ ă β there is a unique

gβ̃ : β̃ Ñ V satisfying (‹β̃). Now we glue them all together: using replacement, we obtain a (set)

function h : β Ñ V such that for β̃ ă β, hpβ̃q “ gβ̃. By the uniqueness, any two different gβ̃0
and gβ̃1 agree on their common domain, so g “

Ť

hrβs (i.e.
Ť

β̃ăβ gβ̃) is a function. Check that

g : β Ñ V satisfies (‹β), again contradicting the initial assumption and proving the claim. �

Intuitively, G is obtained by taking the union of all gβ, for β P ON. Of course to be formally

correct, we must display a formula φG defining G, in the sense that y “ Gpαq ðñ φGpy, αq. We

can let φGpy, αq be the formula expressing

Dg α P dompgq P ON and @β P dompgq p‹βq holds, and gpαq “ y

where of course you must replace the implicit mention of y “ F pxq by an adequate formula φF py, xq.

In fact, this represents a simple procedure to obtain φG from φF (just insert a given φF in the

above).1 That φG actually defines a function follows from the uniqueness of each g, as in the proof

of the claim. �

The following lemma is often useful. It says that every set of ordinals is bounded in ON:

Lemma 2.2. If X is a set of ordinals, σ “
Ť

tξ ` 1 | ξ P Xu is an ordinal; and in fact, it is the

least ordinal with the property that X Ă σ.

Proof. It is clear that σ is well-ordered by ă. To see σ P ON, it remains to show it is transitive:

this is because the union of a set of transitive sets is itself transitive (let x P y P σ; there is ξ P X

such that y P ξ ` 1, so x P ξ ` 1 and thus, x P σ). This shows σ P ON.

If ξ P X, ξ P ξ ` 1 so ξ P σ; thus X Ď σ. It remains to show σ is least with this propery.

Assume X Ď β P ON, and show σ Ď β (which is equivalent to σ ď β): If α P σ, for some ξ P X

we have α ď ξ (see above). As X Ď β, ξ P β. So α ď ξ ă β and we’re done. �

We shall write suppXq for σ defined as above.

1Thus, the schema of transfinite recursion is actually a recursive set of formulas, which is nice to know.
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4. Cardinals

We may consider ‘existence of a bijection’ as defining a (possibly partial) ordering between sets:

Definition 4.1. For any two sets x, y, write x ĺ y iff there is an injective function h : x Ñ y.

Write x « y if there is a bijection between x and y.

Using the axiom of choice, one can show that x ĺ y is also equivalent to: there is a surjective

function h : y Ñ x (use the the axiom to pick an element from the preimage under h of each z P y

and define h̄ : y Ñ x using these and some dummy value outside the range of h).

Interestingly, in the presence of the other axioms of ZF, AC is equivalent to the statement that

ĺ is a total order, that is, @x, y x ĺ y or y ĺ x. It may be a little surprising that the following

(which you have proved as an exercise) was shown without using AC:

Theorem 4.2 (Schröder-Bernstein). If x ĺ y and y ĺ x we have x « y.

If we look at the behavior of « on ON we arrive at the notion of cardinal number :

Definition 4.3. An ordinal α is called a cardinal number (or just: a cardinal) if and only if there

is no β ă α such that α « β.

It follows from the previous theorem that we can replace « by ĺ in the above definition. The

proof of the following is left to you:

Proposition 4.4. For any α P ONzω, α` 1 is not a cardinal. Neither is α` n nor α` ω.

Proposition 4.5. Each n P ω is a cardinal, as is ω.

Proof. We show by induction that for each n P ω, the following holds:

(˚n) for all f : nÑ n, if f is 1-to-1 then f is onto.

The case n “ 0 is trivial. Say (˚n) holds and let f : n` 1 Ñ n` 1 be arbitrary. First assume that

n ` 1 is not in the range of f . Then f æ n must be onto n, contradicting that f is injective. So

n` 1 is in the range; let fpkq “ n` 1 and fpn` 1q “ l. The function g : nÑ n defined by

gpmq “

#

l if m=k,

fpmq otherwise

is injective, so by (˚n) it is onto. But then f is onto as well.

Clearly, (˚n) implies that there can be now bijection f : n Ñ m for m ă n, proving the first

statement of the theorem.

If f : ω Ñ n is a bijection, f æ n : n Ñ n would be injective. But then it must be onto,

contradicting that f was injective, so ω is a cardinal. �

We say a cardinal α is finite if and only if α P ω.

Definition 4.6. For any set, let cardpxq denote the ă-least cardinal α such that α « x, if such

exists.

Note that you can replace the word ‘cardinal’ by the word ‘ordinal’ in the above (by the definition

of cardinal).

The first thing to note is:



LECTURE 12: AXIOMATIC SET THEORY 3

Proposition 4.7. If a set x can be well-ordered, i.e. there is ăxĎ x2 which is a well-ordering of

x, then cardpxq is defined (this can be shown without using the axiom of choice).

Proof. Given such x, and fixing a well-odering ăx of it, we construct h : α Ñ x which is an

isomorphism of the structures xα,ăy and xx,ăxy. Obviously, h also witnesses cardpxq “ α.

Apply the schema of transfinite recursion to obtain a class function F : V Ñ V satisfying:

(1) F pαq “

#

the ăx-least u P xz ranpF æα, if it exists

w0 otherwise,

for α P ON–where w0 is some arbitrary set which is not an element of x. We show that for some

ordinal α, F æ α is the isomorphism we are looking for.

Letting D “ tξ | F pξq ‰ w0u, F æ D is injective, so G “ pF æ Dq´1 is a a definable class function

whose domain is the set x. Thus, D must be a set by replacement. By the a previous lemma,

α “
Ť

D is an ordinal. By construction, h “ F æ α is the isomorphism we were looking for. �

Corollary 4.8. For any well-ordering xx,ăxy, there is precisely one alpha P ON and precisely one

map h such that h witnesses the structures xα,ăy and xx,ăxy are isomorphic.

Proof. The previous proof shows that such α and h exist. To prove uniqueness, say h̄ is an iso-

morphism of xx,ăxy with xᾱ,ăy. The map g “ h ˝ h̄´1 : ᾱÑ α is a bijection and clearly preserves

ă. Towards a contradiction, assume there is ξ P ᾱ such that gpξq ‰ ξ; as g is order preserving, the

least ξ with this property must satisfy ξ P αz ranpgq, contradicting surjectivity of g. So g is the

identity on ᾱ and ᾱ “ α. �

Definition 4.9. The α descibed in the previous corollary is called the length of ăx. We write

lengthpăxq “ α.

This makes it easy to show:

Proposition 4.10. There is no largest cardinal.

Proof. Let α P ON. Note first that we can form the set of all well-orderings of α, by comprehension,

as this is a definanble subset of the powerset of αˆ α:

tr Ď αˆ α | r is a well-ordering of αu.

Any β P ON such that β « α induces a well-ordering ă of α: letting h : αÑ β be some bijection,

define ă by ξ ă ν ðñ hpξq ă hpνq. Thus, the map r ÞÑ lengthprq is a surjection from the set

of well orderings of α onto the class of β such that β « α. Thus, by replacement, the latter is in

fact a set. By Schröder-Bernstein, it is moreover an interval of ordinals. Its supremum is the least

cardinal above α. �

Definition 4.11. For any ordinal α, write α` for the least cardinal above α. Define the ‘aleph-

function’ by transfinite recursion:

ℵ0 “ ω, the least infinite cardinal

ℵξ`1 “ pℵξq`

ℵλ “
ď

tℵξ | ξ ă λu when λ is a limit ordinal.
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Thus, for each α P ON, ℵα is the α-th cardinal. The least uncountable cardinal is ℵ1.

So far, we only know that well-ordered sets have a cardinality, and in fact, if we don’t assume

AC, there may be sets whose cardinality in the above sense is undefined.2

Theorem 4.12. Every set can be well-ordered; moreover, the previous statement is equivalent to

the axiom of choice (in the presence of the other ZF-axioms).

Proof. Let x be arbitrary. We have seen that it suffices to find a bijection of x with some ordinal.

First, using the axiom of choice, we find a function t : PpxqztHu Ñ x such that for all y Ď x,

fpyq P y: look at the disjoint union of PpxqztHu, i.e.
Ť

ttyu ˆ y | y P Ppxqu. This is easily seen

to be a set; construct it as
Ť

ranphq (using union and replacement), where h : Ppxq Ñ V is given

by hpxq “ txu ˆ x (using pairing, cartesion product, powerset). Now if t is such that for each

non-empty y P Ppxq, cardptX tyu ˆ yq “ 1, t is a function with the above property.

Now we can argue as in the proof of theorem 4.7, to obtain α P ON and a function f : α Ñ x

satisfying

(2) fpαq “ tpxz ranpF æαqqq if ranpF æαqq ‰ x;

as before, we can assume that α is the least ordinal such that the fpαq as above is not well-defined.

Clearly, f is a bijection.

For the other direction, we prove AC assuming every set can be well-ordered. Let X be some set

consisting of pairwise disjoint, non-empty sets. Let ă be a well-ordering of
Ť

X. Let t consist of

those z P
Ť

X such that for the unique y P X with z P y, z is the ă-least element of y. That this

is a set is just an application of the comprehension schema. Clearly, for any y P X, tX y contains

exactly one element. �

5. Cardinal arithmetic

We now define cardinal addition, multiplication and exponentiation and establish their most

basic properties. Unfortunately, it is customary to use the same notation for both cardinal and

ordinal operations, although they usually don’t agree–if the necessary, writers typically issue a

parenthetical remark, e.g. αβ (ordinal exponentiation). In this section, we avoid confusion by

momentarily denoting ordinal operations by `ON, ¨ON and expON.

Definition 5.1. Let α and β be ordinals. Define

α` β “ cardpα 9Yβq,

where α 9Yβ denotes the disjoint union t0u ˆ αY t1u ˆ β;

α ¨ β “ cardpαˆ βq

and

αβ “ cardpβαq,

where we write βα for the set of functions f : β Ñ α.

2Today we have to work with lots of models of ZF where AC fails, as these come up naturally in some arguments

even when working in ZFC. Note that we could, independently of AC, regard the ‘cardinality’ of a set to be the class

of all sets that can be brought in bijection with it, but that’s not nearly as nice as the present definition.
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Note that some people write αβ for both the set βα and its cardinality, which causes surprisingly

little confusion.

Proposition 5.2. (1) For all ordinals α, β we have

α` β “ cardpα`ON βq

α ¨ β “ cardpα ¨ON βq

(2) For m,n P ω, m` n, m ¨ n and mn agrees with the usual meaning.

(3) For cardinals α, β which are not both finite, we have α` β “ α ¨ β “ maxtα, βu.

Proof. The proof of (1) is only sketched: α `ON β is can equivalently be defined as the length

of a particular well-ordering of α 9Yβ (put one ordinal ‘above’ the other), α ¨ON β as the length of

a particular well-ordering of α ˆ β (lexicographic). That this definition is equivalent to ours is

a somewhat tedious, but straightdorward induction (which I skip). So the length of these well-

orderings is of course in bijection to their respective underlying set (α 9Yβ or αˆ β respectively).

(2) can be easily shown from (1) and using induction to prove the corresponding fact for `ON

and ¨ON and expON (I also leave this to you).

It remains to show (3). We start with `ON. It is enough to show that for all ordinals κ, κ « κ`κ,

for then α` β ď maxtα, βu and the result follows from Schröder-Bernstein.

Towards a contradiction, let κ P ON be least such that κ ff κ` κ; κ is clearly a cardinal. Let ă

be the lexicographic ordering on K “ κˆ t0u Y κˆ t1u, defined by

pξ, iq ă pη, jq ðñ ξ ă η or pξ “ η and i ă j.

We have that

κ ď κ` κ ď lengthpăq

. If κ ă lengthpăq, look at “the κ-th element of ă”: letting h : κ ˆ t0u Y κ ˆ t1u Ñ lengthpăq be

the unique order-isomorphism, fix pβ, jq P κˆ 2 such that hpβ, jq “ κ. Note that

κ « tpξ, iq P K | pξ, iq ă pβ, jqu Ď β ˆ t0u Y β ˆ t1u Y tpβ, 0qu « pβ ` βq `ON 1.

Since κ was the least counterexample, this means that κ ĺ β, contradicting that κ is a cardinal.

The proof of (3) is somewhat similar: I only give a sketch. Again, it suffices to show κ ¨ κ “ κ,

so again assume κ is the least counterexample. We think of κˆ κ as well-ordered by the maximo-

lexicographic ordering :

pξ, νq ă pξ̄, ν̄q ðñ

$

’

’

&

’

’

%

maxtξ, νu ă maxtξ̄, ν̄u or

pmaxtξ, νu “ maxtξ̄, ν̄u and ξ ă ξ̄q or

pmaxtξ, νu “ maxtξ̄, ν̄u and ξ “ ξ̄ and ν ă ν̄q.

You should draw a picture!3 Now one can show that by leastness of κ, the length of ă (on κˆ κ)

is κ. �

3In fact, this ordering well-orders the class of pairs of ordinals and is frequently used to find a definable (class)

bijection between this class and ON, called ‘Gödel pairing’.
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Note that cardinal addition and multiplication are well-defined even in the absence of the axiom

of choice; the above proof shows that α 9Yβ and αˆ β can always be well-ordered.

Thus, cardinal exponentiation and multiplication are trivial. Very much unlike cardinal expo-

nentiation, which admits an extremely complex theory. Some basic observations are:

Proposition 5.3. Let α be any cardinal.

(1) for n P ω, αn “

n times
hkkkkikkkkj

α ¨ . . . ¨ α “ α.

(2) for any cardinal, 2α ą α and for infinite cardinals, αα “ 2α.

Proof. The first item follows from the previous theorem.

Towards a contradiction, assume 2α ĺ α (i.e. we prove a little more than what is asked for, but

the present proof gives you information even in non-choice settings). Then by Schröder Bernstein,

there is also a bijection h : αÑ α2. Now use Cantor’s diagonalization trick: define f : αÑ 2 by

fpξq “ 1´ hpξqpξq,

(note hpξq is a function from α into 2). This is a contradiction, since f R ranphq.

Since (in concise functional notation)

α2 Ď αα Ď αˆ α,

the last statement follows from α ¨ α “ α for α R ω. �

Today we know that almost nothing can be shown about the function ξ ÞÑ 2ξ in ZFC. For

example, assuming ZFC is consistent, and letting n be your favorite natural number, we can show

also ZFC together with the statement 2ω “ ℵn is consistent.4 So ZFC does not suffice to give a

specific value to 2ω, and in fact apart from a few relatively obvious constraints, this value can be

shown to be consistently anything you wish. The situation is analogous with 2α for arbitrary α.

Note that 2ω “ cardpRq (this is left as an exercise), so this could be considered a serious shortcoming

of ZFC.5

If, on the other hand, we consider βα for arbitrary α and β, the situation becomes even more

complex. While in the case of ξ ÞÑ 2ξ, we know exactly what is merely consistent with ZFC and

what can be shown in ZFC, we do not know these things about αβ in general and there are many

open questions–but a surprisingly rich structure theory has emerged within ZFC, called pcf-theory.

Very much at the beginning of the history of set theory, Cantor formulated his famous continuum

hypothesis:

Definition 5.4. The continuum hypothesis, or CH is the statement 2ω “ ω1. The generalized

continuum hypothesis, or GCH is the statement that for every cardinal α, 2α “ α`.

The proof of the following would take another block:

Theorem 5.5. Both CH and its negation are consistent with ZFC; the same holds for GCH and

its negation (assuming that ZFC is itself consistent).

4Such so-called relative consistency results use a technique called forcing.
5On the other hand, we can consider adding axioms to ZFC: a very popular one called PFA proves that 2ω

“ ℵ2.


