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I. INTRODUCTION AND BACKGROUND INFORMATION

ET A, the alphabet, be a finite or countably infinite set.

The notion of (idealized) codes will play an important
role in the sequel. For the purpose of motivation, we remind
the reader of the usual notion of a binary prefiz-free code.
This is a map which to any a € A assigns a binary codeword
in such a way that no codeword which appears in this way
is a prefix of another such codeword. An example is shown
in Table I which displays a codebook for the first six letters

A codeword &k
a 100 3
b 1110 4
c 101 3
d 110 3
e 0O 1
f 1111 4
TABLE I

A CODEBOOK

of the english alphabet. We may use the code for identifica-
tion of an unknown letter from A or we may conceive the
code as a strategy for observation, assuming that an ob-
servation is broken down in units of binary questions, and
that any such question is feasible. For the example shown,
the code points to the question “is the letter one of a, b, ¢, d
or f?7” as our first question (equivalent to the question “is
the first binary digit in the codebook a 1?”). Continuing
in this way, enquiring about the further binary digits un-
til identification is possible, we realize that the code length
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Fig. 1. Binary intervals corresponding to the code in Table 1.

function k which is shown in Table I gives us the number
of bits needed for identification.

By M} (A) we denote the set of probability distributions
over A. If, besides the code given in Table I, we also know
the “true” distribution P, then the average code length, for
which we use the bracket notation {, P), can be computed.
According to the above said, we can interpret (k,P) as
mean observation time (basing observations on the given
code and assuming that P is the “true” distribution). On
the coding side we realize that the detailed structure of the
code is immaterial for the calculation of mean observation
time — only the code lengths as given by the function & is
important. It is, therefore, essential to note the following
result:

Theorem 1 (Kraft’s inequality) A necessary and suffi-
cient condition for a function x : A - Ny = {0,1,2,...}
to be a code length function for a binary prefix-free code
is that the following inequality holds:

PIPARES (1)

icA
It is convenient to expand this slightly by allowing the
value k(i) = oo corresponding to the “impossible”; in-
finitely long codeword, a codeword which has no finite code-
word as prefix and is, typically, used in situations where you
believe that the letter in question cannot possibly occur.
Allowing k(i) = oo does not change the validity of Kraft’s
result, quoted above. In order to be systematic we should
also allow the empty codeword with length 0. In practice,

this is only used when you feel certain what the outcome
will be.

A simple proof of Theorem 1, which works equally well
for finite and for infinite alphabets, depends on the natural
1 —1 correspondence between codewords and binary inter-
vals. For this correspondence, the empty codeword corre-
sponds to [0,1] and if &1 - - - & corresponds to the interval
I, then g1 - - - €40 corresponds to the left half, and 1 - - - ;1
to the right half of T (and the “impossible” codeword cor-
responds to the empty set §). For instance, for the code
given in Table I, you find that the set of corresponding
binary intervals is as shown in Figure 1.

Note also that the case of equality in (1) corresponds to
the case of a “maximally compressed” code in the sense



that no binary prefix-free code x* has a code length func-
tion which satisfies k*(i) < k(¢) for all ¢ € A with strict
inequality for one or more ¢ € A. The reader will find more
details in [7].

However well known the above facts are, they are needed
as motivation for the game we shall study.

Apart from focusing on the code length function x (and
not on the full code) we decide, firstly, to pay attention only
to maximally compressed codes, i.e. to the case of equal-
ity in (1), and, secondly, to idealize by allowing arbitrary
non-negative numbers as codeword lengths. This idealiza-
tion is motivated by the wish to avoid somewhat arbitrary
effects caused by the choice of the binary alphabet {0,1}
as reference alphabet, and can be justified in various ways,
e.g. by pointing to block coding and the noiceless coding
theorem or by the fact that any idealized code length func-
tion will be at most one bit away from an integer-valued
code length function.! A final modification of the notion of
a code length function is purely technical and a matter of
mathematical convenience. It consists in changing the base
for logarithms and exponentiation from 2 to e.

With the above remarks in mind we now define the set
K (A) of idealized code length functions or, as we shall sim-
ply say in the sequal, of codes, as the set of mappings
k: A — [0, 00] such that

Z e r) =1,

a€A

If K € K(A) and P € M} (A), we say that (k,P) is a
matching pair if k(a) = —1In P(a) for each a € A (“In” is
used for the natural logarithm). We may also express this
by saying, e.g. that x is adapted to P, or that P is the
distribution matching k.

As above, we use (-, P) to denote mean value w.r.t. P,
and we use H = H(-) to denote entropy and D = D(-||-)
to denote information divergence. For any P € M3 (A) and
any k € K(A),

(k, P) = H(P) + D(P||Q), (2)
where () is the distribution matching x. This is the linking
identity.

A slight variation of concepts is often natural. If P is a
distribution and x a code, we introduce the redundancy of
P given k, or the redundancy of k assuming P, which may
be thought of as the unavoidable redundancy which results
from using & in order to code events which are governed
by the “true” distribution P. This quantity is denoted by
D(P||x) and defined to be equal to D(P||Q) where @ is the
distribution matching k. Thus we may rewrite the linking
identity in the form

(k, P} = H(P) + D(P||k).
'If K : A — [0,00] satisfies Y., 27" < 1 and we put £* = [K]

then (k, P) < (k*, P) < (s, P)+1forall P € M} (A), and there exists
a binary prefix-free binary code with k* as code length function.

By the usual topology on Mi(A) we shall mean the
topology of pointwise convergence and topological notions
such as closure, continuity and semi-continuity are under-
stood to be with respect to this topology. For instance, the
entropy function P ~ H(P) is continuous if A is finite
but only lower semi-continuous for an infinite alphabet.
Note that the usual topology is metrizable by total vari-
ation. This follows from Scheffé’s theorem, cf. [4]. We use
V (P, Q) to denote the total variation between P and @, i.e.
V(P,Q) = >, |pi — ¢i|, and we write P, L pif (Pp)n>1
converges in total variation to P.

A sequence (P,)n>1 € M} (A) converges in divergence to
P € M} (A) if D(P,||P) — 0. We express this by writing

P, 3P Convergence in divergence is stronger than con-
vergence in total variation as follows from Pinskers inequal-
ity: D(P||Q) > 3V (P,Q)?. At times we find it convenient
to say that P, converges in entropy to P if H(P,) — H(P).
In general, this will of course not say all that much but for
the specific situations we have in mind, this kind of conver-
gence is even stronger than convergence in divergence and
often requires a special argument.

It may be reasonable to use the generic term “informa-
tion space” for any mathematical object which reflects the
knowledge available in a given situation. We shall only con-
sider the simplest case when this makes sense. Thus, to us,
an information space is a pair (A, P), where A — the al-
phabet as above — is a countable set and P is an arbitrary
subset of M3 (A). We shall mostly use the relatively neutral
terminology model for the set P. If you have applications
to quantum physics in mind, it would be better to call P
the preparation space — and distributions in P individual
preparations — whereas, if you think in terms of statistical
concepts, it would be natural to refer to P as a statistical
model and, perhaps, to parametrize the distributions in P.
The concept has of course been studied extensively in one
form or the other. The view which we favour is forcefully
put forward by Jaynes, cf. e.g. [15], where he stresses the
distinction between distributions as the “truth” about “re-
ality” and as a means of expressing our knowledge about
reality.

The distributions in P are referred to as consistent distri-
butions. A distribution P € M} (A) is essentially consistent
if there exists a sequence of consistent distributions which
converges to P in divergence.

We shall exploit a game, the code length game, which
is closely related to the mazimum entropy principle. This
game was introduced by the author in [24], cf. also [25],
and is defined as the two-person zero-sum game with code
length, which maps (k, P) € K(A) x P into (k, P), as cost
function. In more detail, the set P is the strategy set for
the system (“Player I”) and K(A) the strategy set for the
observer (“Player II”). It is the objective of the observer to
minimize average code length, whereas the system attempts
to maximize this quantity. For k € K (A),

R(k) = sup (K, P)



is the risk associated with x and

Rmin = inf R(I‘.‘/)

KEK(A)

is the minimum risk of the model, written as R, (P) when
required. The corresponding notions for the system are the
infima over k € K(A) of (k, P) which, by (2), we recog-
nize as the entropy H(P), and the supremum over P € P
of these quantities which then is the mazimum entropy
value Hpax = Hmax(P). We also refer to the game as the
Hpnax / Rmin-game.?

Clearly, Hmnax < Rmin- If Hnax = Rmin, this is the value
of the game and if, furthermore, Ry, < oo, we say that
(A, P), or just P, is in equilibrium.

A minimum risk code (Rmin-code) is an optimal strat-
egy for the observer, i.e. a code k with R(k) = Rmin- A
mazimum entropy distribution (Hpax-distribution) is an es-
sentially consistent distribution P with H(P) = Hmax. We
emphasize that a maximum entropy distribution is only re-
quired to be essentially consistent, not necessarily consis-
tent. The results to follow — and comments in Section VII —
constitute arguments in favour of this departure from usual
practise. In our terminology, the usual concept is a consis-
tent Hpax- distribution which, in game theoretical terms,
is the same as an optimal strategy for the system.

Further concepts are important. Firstly, a sequence
(Pp)n>1 of consistent distributions is asymptotically opti-
mal if H(P,) = Hmax and, secondly, P* € M3 (A) is the

mazimum entropy attractor (the Hy.x-attractor) if P, 2
P* for every asymptotically optimal sequence (Pp)p>1.
Clearly, the Hp,ax-attractor need not exist — consider, for
example, the model of all deterministic distributions — but
if it does, it is unique. If P* is the H,ac-attractor, then P*
is essentially consistent, and H(P*) < Hpax. Therefore, it
must be the unique Hpax- distribution if H(P*) = Huax-

Basic information about the Hpax/Rmin-game is con-
tained in the result below which follows directly from the-
orems 1, 2 and 3 of [24], cf. also Theorem 2 of [25]. Note
the use of “co” for “convex hull”.

Theorem 2: The information space (A, P) is in equilib-
rium if and only if Hmax(co(P)) = Hmax(P) < oo. If this
condition is fulfilled, there exists a unique minimum risk
code, k*, as well as a, likewise unique, maximum entropy
attractor, P*, and (k*, P*) is a matching pair.

In particular, if the condition of the theorem holds then
there is a unique distribution to which any attempt to find
a maximum entropy distribution must converge, even in
a rather strong sense. Though Theorem 2 is sufficient for
most purposes, the existence of the Hy,ax- attractor can be
established under weaker conditions, cf. Section VII.

For a model in equilibrium, we refer to the matching
pair, the existence of which is ensured by Theorem 2, as
the optimal matching pair associated with the model.

2In [24] and [25] this game is called the absolute game in contrast

to certain relative games which are of significance also for continuous
distributions.

We warn the reader that in Theorem 2, the equal-
ity H(P*) = Hmpax need not hold, thus the maximum
entropy distribution may not exist. In the more typical
case when H(P*) = Hpax does hold, we say that the
model is entropy-continuous. Any model with a finite al-
phabet A is entropy-continuous by continuity of the en-
tropy function. In the case of an infinite alphabet, the en-
tropy function is only lower semi-continuous. Thus, for a

convergent sequence: P, AN P, we can only assert that
liminf,_,o H(P,) > H(P). This is why we can only con-
clude that the inequality H (P*) < Hpax holds in Theorem
2.

II. CRITERIA FOR OPTIMALITY

Theorem 2 is an existence result and does not give much
of a clue as to how one finds the optimal matching pair in
any given situation. Therefore, there is a need to develop
criteria which will facilitate the search for optimal strate-
gies. In this respect the following concept, borrowed from
mathematical economics, cf. [1], for example, turns out to
be particularly useful. The code x* is the Nash equilibrium
code for (A, P) if the distribution P* which matches x* is
essentially consistent and R(k*) = H(P*) < oo. In the two
theorems to follow, we shall see that the Nash equilibrium
code is unique and that, typically, the Nash equilibrium
code does exist. Note that, in principle, it is possible to
check if a code is a Nash equilibrium code without knowing
Hpax or Ryin, whereas a direct check if a given distribu-
tion is the Hyac-attractor or a Hy,,,-distribution requires
that Hp,ax is known.

For a number of naturally occuring models, the Nash
equilibrium code is also stable, i.e. (k*, P) is finite and
independent of P for every consistent distribution P (cf.
[25]). There may be many stable codes. If a stable code has
a consistent matching distribution, it must be the Nash
equilibrium code. Often, the Nash equilibrium code can be
found in this way, i.e. by first searching for stable codes —
Section IV contains some illustrative examples of this ap-
proach. We stress that the Nash equilibrium code need not
be stable and also, it may have an inconsistent matching
distribution.

Generalizing Theorem 2 of [25] we obtain:

Theorem 3: Let (A,P) be an information space and as-
sume that the Nash equilibrium code, x*, exists. Let P*
be the distribution matching x*. Then (A, P) is in equilib-
rium and (k*, P*) is the optimal matching pair. For P € P
and k € K(A), the following sharper versions of the trivial
inequalities H(P) < Hmax and Rmin < R(k) hold:

H(P) + D(P||P*) < Hmax(P), 3)
Rumin(P) + D(P*||s) < R(k). (4)
Proof: As P* is essentially consistent, we may choose

(Pn)n>1 € P such that D(P,||P*) — 0. Then, by the link-
ing identity and by lower semi-continuity of the entropy



function,

R(k*) > limsup{xk*, P,) = limsup(H (P,) + D(P,||P*))

n—oo n—oo

= limsup H(P,) > liminf H(P,) > H(P*) = R(k").

n—00 n—o0

It follows that the sequence (H(P,)),>1 is convergent and
that lim, . H(P,) = R(k*) = H(P*). In particular,
Riin < R(k*) = H(P*) < Hmax- As Hpax < Rmin always
holds, H(P*) = Hmax = Rmin = R(k*). Thus, P is in equi-
librium, (P,) is asymptotically optimal, x* is a minimum
risk code and P* a maximum entropy distribution.

If k is any code, then

R(k) > limsup{k, P,) = limsup (H(P,) + D(P,||k))

n—oo n—oo

= Hpax + limsup D(P,||k)

n—o

= Rmin + hmsupD(Pﬂ‘”ﬁ) Z Rmin + D(P*”’%)’

n—oo

where, in the last step, we used the lower semi-continuity

of D(:||k) and the fact that P, B P*, hence P, % P*.
Thus (4) holds and k* is the unique minimum risk code
(uniqueness because D(P*||k) = 0 implies that & is the
code adapted to P*).

For @ € P,
H(Q)+ D@Q|IP*) = (", Q) < R(K") = Hmax,

thus (3) holds. Therefore, P* is the Hpyax-attractor as well
as the unique maximum entropy distribution (uniqueness
because D(Q||P*) = 0 implies Q = P*). [ |

The proof shows that if the Nash equilibrium code exists
and (P,)n>1 is a sequence of consistent distributions, then
the conditions that (P,),>1 converges in divergence to P*
and that (P,),>1 is assymptotically optimal are equivalent.

The theorem points to a possible approach in the search
for the optimal matching pair in cases when a search for
stable codes does not lead to the goal. This approach is
illustrated by examples in Sections V and VI.

If (A,P) is in equilibrium and entropy-continuous, any
asymptotically optimal sequence of distributions does of
course converge in entropy to the Hp.x-attractor. This
points to the information spaces which are in equilibrium
and entropy-continuous as the most important ones. Let us
collect some facts for this class of spaces:

Theorem 4: Assume that the information space (A, P) is
in equilibrium and denote by (k*, P*) the optimal matching
pair. Then the following conditions are equivalent:

(i) (A,P) is entropy-continuous,
(ii) (A,P) has a Hyax- distribution (necessarily P*),
(iii) (A,P) has a Nash equilibrium code (necessarily k*),

(iv) every asymptotically optimal sequence of distributions
converges in entropy to P*,

(v) there exists an asymptotically optimal sequence
(Pp)n>1, of distributions such that lim, ,.(k*, P,) =
(k*, P*).

We leave the simple proof, based on the linking identity
and the preceeding theory, to the interested reader.

For our last theoretical result we point out that any re-
sult which asserts the existence of the Hac-attractor can
be viewed as a limit theorem. Below we further emphasize
this aspect (note the use of “co” for “closed convex hull”):

Theorem 5: Let (A, Pp)n>1 be a sequence of informa-
tion spaces and assume that they are all in equilib-
rium, say with Hpax-attractors Py; n > 1. Assume that
sup,,;>1 Hmax(Pn) < oo and that the models are nested in

the sense that co(Py) C co(Pa) C ---.
Then all models P with

UP.cPcow| | Pn

n>1 n>1

()

are in equilibrium and have the same Hp,.-attractor, P*.
Furthermore, P} Y P* and, in case all models P, are
entropy-continuous, convergence even takes place in diver-
* D *
gence: Py = P*.
Proof: Put h = sup,;>1 Hmax(Pn). Then, for any P
satisfying (5),

h < Hax(P) < Hmax(c0(P)) < Hmax | @ | Pn

n>1

n>1 n>1
= sup Hax(co(Pn)) = h,

n>1

where the first equality follows by lower semi-continuity
of the entropy function. By Theorem 2, we now see that
Hp,2x(P) = h and that P is in equilibrium.

Again, let P satisfy (5) and let P* be the Hpyax- attrac-
tor of P. We shall prove that P converges to P* in total
variation. This will show that the attractor is independent
of P as long as P satisfies (5). For each n > 1, choose
P, € P, such that H(P,) > Hyax(Pn) — L and such that
V(P,,P}) < L. Then (P,)n>1 is asymptotically optimal
for P, hence P, 3 P*, in particular P, Y p~. Clearly
then, P* % P*.

In case all the P, are entropy-continuous, we consider a
closed model P satisfying (5). Then (P}),>:1 is asymptot-

ically optimal for P and P} B p* follows. |

III. SOME CLASSICAL MODELS AND ASSOCIATED
DISTRIBUTIONS

We shall study some of the classical distributions based
on information theoretical considerations. Without beeing
comprehensive we mention earlier research in this direction:
Linnik [19], Cencov [5], Csiszér [8] and Barron [2]. However,
our approach is also based on games. The findings can be



considered as a companion to the recent correspondence
[9] by Harremoés where focus was on convexity properties
and detailed approximations regarding the binomial and
Poisson distributions. We shall derive basic properties by as
simple considerations as possible based on the Hyax/Rimin-
game. In order to stress the point of view taken, we shall,
slightly provocatively, redefine the classical distributions
involved.

As an illustrative example, consider first a finite alpha-
bet A and the uniform distribution over A which we define
as the maximum entropy distribution for P = M} (A). Of
course, this makes good sense and leads to the usual uni-
form distribution (directly or via Theorem 3, say). The
point is that the information theoretical approach stresses
the importance of this distribution as the zero-knowledge-
distribution.

The concrete information spaces which we shall study
are connected with the alphabets A, = {0,1,2,...,n};
n > 1, and A* = {0,1,2,...}. We now use E(P) for the
meanvalue of a random variable with distribution P.

For 0 < X < n, B,(A\) C M;(A,) is the set of distribu-
tions of sums of n independent Bernoulli variables for which
the sum has mean value A. Recall that Bernoulli variables
are random variables that can only assume the two values
0 and 1. Note that we do not require that the Bernoulli
variables are identically distributed, only that they are in-
dependent.

Further, G () is the set of all P € M} (A,) with mean
value \: E(P) = A. Using the natural embedding of the
sets M1 (A,) in M} (A*), we put B*(\) = UBn(\) and
G*(\) = UGxr(A), the unions beeing over all n > A.
Clearly, for 0 < p < 1, Bi(p) = Gi(p) = {BIN(1,p)},
BIN(1, p) denoting the Bernoulli distribution with param-
eter (success probability) p.

By Boo(A) we denote the set of distributions in M7 (A*)
of infinite sums of independent BIN(1, p,,)-distributed ran-
dom variables with Y >, p, = A (by the Borel-Cantelli
Lemma this makes good sense). By G (A) we denote the
set of all P € M} (A*) with mean value X\. We shall use
the notation X (I), where X could stand for B,,, B*, Bw,
Gy, G* or G and where I is some subset of [0, oo, for the
union of X ()\) over A € I. For instance, G ([0, A]) is the
set of P € M7 (A*) with mean value at most A.

For the appropriate parameter values, we now define
the binomial distribution BIN(n,p), the geometric distri-
bution GEO(n, \), the geometric distribution GEO()) and
the Poisson distribution POI(X) as the Hpax-distribution
of B,(np), of G, (X), of G*(A) and of B*(A), respectively.

It is not clear beforehand that these definitions make
sense. We shall consider this problem in the next sections.

IV. THE GEOMETRIC DISTRIBUTIONS

The simplest cases to handle are the geometric distribu-
tions since, for these, the relevant models are convex.

Consider first the family P,; 0 < x < 1, of distributions
on A* determined by the equation

Py(k) = P, (0)-z*; k>0. (6)

The matching codes k, are given by

ke(k) =—InP,(0)—klnz; k>0, (7
and are, therefore, stable for all models G, (A\); 0 < A < oo.
It is easy to determine P,(0) as well as z = z()) explicitly
such that E(P,) = A. Not surprisingly, one finds the well
known expressions:

1 A

Pw(0)=1+—/\7 $:1+—)\- (8)

Thus, Theorem 3 applies. In particular, P, (with z = z()))
is the Hpax-distribution of G (A) as well as of G ([0, A])
and

Hinax(Goo (V) = Hmax(Goo ([0, A])
=In(1+A)+Aln(1+ i). (9)

Then fix n. For each 0 < z < o0, let P, ,; be the dis-
tribution in M} (A,) for which the point probabilities are
given by

Pno(k) = Po,(0)-2% 0<k<n. (10)
The cases £ = 0 and z = oo are conceived as singular
cases with P, o = dp and P, o = 0, (point distributions
concentrated in 0 and in n, respectively).

The matching codes &, , are given by

bng(k) =—InP,,(0)—klnz; 0<k<n, (11)
and are, therefore, stable for all models G,,(A), 0 < A < n,
indeed that is how they were determined. The mean value
E(P,) varies from 0 (for x = 0) to n (for z = o0) with
intermediate value n/2 (for z = 1). It is clear that z ~
E(P, ) is stricly increasing in z, a fact that also follows

from continuity of this map and from Theorems 2 and 3.

To a given 0 < X\ < n, let x = z,(A\) denote that value of
x with E(P, ;) = A. Then Theorem 3 applies. In particular,
the geometric distribution GEO(n, A) has been identified
as the distribution P, ;. It may be noted that for 0 < z <
00,z # 1,

.’L'”+1
n+1 1

)- (12)

By (11), and as z = z,(A) < 1 for A < n/2, we see that
if A <n/2, Kk, is also the Nash equilibrium code for the
model G ([0,A]). If n/2 < XA < n, an analagous result is
obtained for the model G, ([A, n]).



Our discussion and Theorems 3 and 4 now lead to the
following result:

Theorem 6: For fixed n and 0 < XA < n, G,(A) is in
equilibrium and the Hpax-distribution, GEO(n, A), is well
defined and characterized as the distribution in G,,(\) de-
termined by (10). If A < n/2, this distribution is also the
H,pax-distribution of G,([0,A]) and if n/2 < XA < m, it is
the Hpyax-distribution of G, ([A, n]).

For 0 < A < o0, the model G (A) is in equilibrium
and the Hy,x-distribution, GEO()), is well defined and
characterized by (6) and (8). This distribution is also the
H,ax-distribution of any of the models G ([0, A]), G*(\)
and G*([0, A]). The maximum entropy value Hp,x is given
by (9).

The models considered are entropy-continuous and, for
0 < X < 0, the distributions GEO(n, A) converge in diver-
gence as well as in entropy to GEO()).

V. THE BINOMIAL AND POISSON DISTRIBUTIONS

In this section we agree to use Px to denote the distri-
bution of X, whether X is a random variable or a random
vector. The key to the results of this section is a combi-
nation of our game theoretical results with an inequality
due to Hoeffding, cf. Theorem 3 of [12]. We begin with a
statement of the inequality we need. For the convenience
of the reader, we also include a brief proof. Note the use of
“x” for “convolution”.

Theorem 7 (Hoeffding’s inequality) Let Py, P, ..., P, be
distributions in M} (A*) and put P = 1 Y"1 P;. Then, in
case Pi, Py, ..., P, are all supported by {0, 1}, the inequal-
ity

(9, P1 % Pox---x Py) <{g,P") (13)
holds for any “integer convex” function g : A* — R, i.e.

for any function k& ~ gy such that 2gxy1 < gr + gr4o for
ke A*.

Proof: Let Xp; 1 < k < n be independent Pj-
distributed random variables and put S, = >} Xj. Put
pr = Pe(1), 1 <k < n. Fix A = Y[ pr and, for a while,
also p3,...,pn. Put 2a = A — Egpk Thus, for an = with
2| < a,pr =a—z and pp = a+2. Put 8’ = X1 + X,
and S” = )3 X} For each v, one can split the probability
P(S, = v) in three terms according to the value of S”.
This then leads to the following expression for (g, Ps, ):

n—2
(9,Ps,) =c— z’ Z (9v = 20v41 + Gv42) P(S” =v),
v=0

n—2

“= Z ((1 B a)Qg,, + 2a(1 B a)g'/-i-l + 01291/-1-2) P(S” = 1/).
v=0

By our reasoning, c¢ is to be considered as a constant. There-
fore, the convexity assumption shows that (g, Ps, ) is max-
imal for £ = 0, i.e. for p1 = pa2. Here, p3, ..., p, were fixed.
Repeating the argument with other values fixed we realize

that as long as A = Y7 px is kept fixed, (g, Ps, ) is largest
when all the p;’s are equal. The result follows. |

First consider the model B,,(\) for 0 < A < n (the cases
A =0 and A = n are singular, trivial cases). Put p = % and
g =1 —p and let P* be the distribution given by

P = ()t

and k* the matching code:

0<k<n, (14)

k*(k)=—1In (Z) —klnp—(n—k)Ing; 0<k<n.
(15)

As is well known and classical, P* € B,(\). We shall
show that * is the Nash equilibrium code of B, (). Then
Theorem 3 will apply, in particular it will follow that P*
is the Hy,ax-distribution and in this way we will have iden-
tified BIN(n,p). It was proved independently by Mateev
[21] and by Shepp and Olkin [23], cf. also Marshall and
Olkin [20], that P* is indeed the Hpax-distribution. For a
recent treatment, see Harremoés [9]. We shall also present
a proof, as the availability of Theorem 3 gives rise to some
simplifications and as the game theoretical approach leads
to a more informative result.

What we have to prove is that for any p,...,p, with
Yoiiq pi = A, the inequality
(k*, P) < (k*, P*) (16)

holds where P = Pg, with S, = Y_, Xi, the sum of n
independent BIN(1, pg)-distributed random variables. It is
convenient to reformulate this by introducing the random
variable T,, = n — S, the number of “failures”. By P we
denote the distribution of the vector (S, T,,) where Pg, =
P and similarly for P* (when Ps, = P*). By &* we denote
the code adapted to P*, i.e.

K*(k1, ko) = —Inn!l+1Ink ! +Inks! — k; Inp — ko Ing
(17)

where 0 < k1 <n and k; + k2 = n. Then (16) is equivalent
to the inequality

(", P) < (", P7). (18)

We find that

(*,P)=—Ilnn!—nH(p,q) + (Ink!, Ps, ) + (Ink!, Pr ).
(19)

By Theorem 7, each of the two averages here is max-
imized when the underlying probabilities pi,---,p, are
equal. Thus (18), hence also (16) holds.

Now fix A > 0 and consider the model B*(A). It is con-
venient also to consider the model

co(B*(N) = |J co(Bn(N).

n>A



As co(B*(X)) € G*(N),
Hpax(B*(A)) € Hpax(co(B*(A))) < 0.

Then Theorem 5 applies. It follows that BIN(n, A\/n) con-
verges in divergence to the Hpa-attractor of B*()\), for
which we again use the notation P*. In particular, the point
probabilities converge. Then, by well known reasoning, we
conclude that

. Ab
P(k):ﬁe A;

We can now summarize the findings:

Theorem 8: The Hpyac-distribution for the models
B,(\) = By(np) is the classical binomial distribu-
tions BIN(n,p) and the Hpax-distribution for the mod-
els B*()), Bxo(A) and ©0(By (X)) is the classical Poisson
distribution POI(\). The models considered are entropy-
continuous and, for each A > 0, BIN(n,A/n) converges
in total variation, in divergence as well as in entropy to
POI()).

For the convergence in entropy we refer the reader to
Theorem 8 of Harremoés [9] where property (v) of Theorem
4 is verified.?

Mateev [21] and Shepp and Olkin [23], proved the fol-
lowing further result, cf. also Marshall and Olkin [20] and
results in the next section:

k>0.

Theorem 9: For fixed n, BIN(n, 1) is the unique maxi-
mum entropy distribution among all binomial distributions
BIN(n,p), 0 <p < L.

The model considered here is an example of a naturally
occurring model which does not behave well seen from our
information theoretical point of view in the sense that the
value of the associated game does not exist:

Theorem 10: For n > 2, consider the model of all bi-
nomial distributions BIN(n,p); 0 < p < 1. Then Hpax =
H(BIN(n,1/2)) < Rmin = In(n +1).

Proof: Let P denote the model in question and con-
sider co(P) = co(P). We base the proof on the general
equalities

Rupmin(P) = Rpin(co(P)) = Hpax(co(P)). (20)

The first equality follows directly from the definitions of
risk and minimum risk, and the second equality is part of
Theorem 2. The fact that Hmyax(co(P)) = In(n + 1) follows
as the uniform distribution over {0,1,2,...,n} belongs to
co(P). Indeed, this distribution is the uniform mixture over
z € [0,1] of the binomial distributions BIN(n, z), a direct
consequence of the classical formula for the beta function
since, by that formula,

/o1 (Z> zt(l-a)" "t ds = (Z) Lk + 1{)(2(1 ;)k +1)

which equals n%H forall 0 < k <mn. [ |

3In fact, a simple proof — which, however, relies on more theory
— amounts to a check that the Poisson distribution is not “hyper-
bolic” , cf. Harremoés and Topsge [10], Theorem 8.4. Intuitively, the
requirement is that the tails must not be too large.

VI. MULTINOMIAL DISTRIBUTIONS, EMPIRICAL
DISTRIBUTIONS

The basis of considerations in the previous section was
Bernoulli variables. They only assume two values corre-
sponding to “success” and “failure”. Now let us consider
a more general situation but still within discrete probabil-
ity theory. Without loss of generality we may then confine
the study to random variables taking values in the natural
numbers N = {1,2,---} (representing the various levels of
“success”).

Denote by Q™ the set of infinite vectors k = (k1, k2,--+)
with the integers k; all non-negative and ) {° k; = n, and
denote by Q* the set of similar vectors but with the looser
requirement » °k; < oo. Then Q* is countable and de-
composed into the sets Q°, Q! ---.

We now fix n € N and @ € M}(N). We also agree that
if Pi,---, P, are distributions in M} (N), then P denotes
the average = Y7 Py.

Consider the model P = P(n, Q) constructed as follows.
For each finite set Py,--- , P, in M}(N) with P = Q we
consider independent random variables Xi,---, X, such
that X, has distribution P,; 1 < v < n and then we
consider the random vector S,, = (Sp1,Sn2,---) where
Sni denotes the number of 1 < v < n with X, = 3;
i =1,2,---. By definition, the model P consists of all dis-
tributions of random vectors S,, that arise in this way. A
typical element of P is denoted P, i.e. P = Pg,_ . Since
P € P depends on P,--- , P, (with P = Q), we may write
P=P(P, - ,P,).

Theorem 11: If H(Q) < oo, then P(n,Q) is in equilib-
rium and entropy-continuous. The maximum entropy dis-
tribution is Po = P(Q,-- -, Q).

Proof: Let kg be the code adapted to Pg and let g;,
i > 1 be the point probabilities for ). Then Py is given by

oo k;
Po k1, ka, ) =n!H% (21)
i=1 v

for all (k1,ke,---) € Q™ and for these vectors,
Ko(k ko,---) =—Inn! = > kilngi+» Inkl. (22)
i=1 i=1

In order to establish the theorem we shall prove that kg is
the Nash equilibrium code, i.e. for any P = Pg, € P with
Sy = (Sn1,Sn2,- - -) we shall prove that (Ko, P) is maximal
for P, =--- =P, = Q. By (22),

(ko,P) = —Inn! — ani Ing; + ZE(lnSm!)

i=1 i=1

=—Inn!+nH(Q)+ ) E(nS,!).
=1

From the investigation in Section V we realize that the in-
dividual expectations E(In Sy;!) are upper bounded by the



corresponding expectations when all i’th point probabili-
ties of Py,--- , P, are equal. Thus

(k0,P) < —Inn!+nH(Q) + Z Z In k!(:) (1 —g)" "

i=1 k=0

= —Inn!+nH(Q) + i In k! (Z) i (1)
k=2 i=1
= H(Py).

As we also find that H(Py) < oo, the proof is complete. B

Let us agree that Hyax(n, @) denotes the maximum en-
tropy value of the model P(n, Q). Then Hyax(n, Q) is the
entropy of the empirical distribution corresponding to n
independent random variables X, --- , X, all with distri-
bution @. The qualifying “max” signals that this empirical
distribution has maximal entropy among all “generalized
empirical distributions” corresponding to independent ran-
dom variables subject to the condition that the average of
the associated distributions coincide with . This is the
content of Theorem 11.

In Shepp and Olkin [23], Theorem 3, a concavity result
was proved for the entropy of multinomial distributions.
Below we generalize this result to one concerning the Hp,ax-
distributions of the models P (n, Q) for distributions which
are not required to have finite support. The computations
needed for the proof are the same as those given in [23] and
are, therefore, only briefly indicated.

Theorem 12: For all n > 1, the map @ ~ Hpax(n, Q) is
strictly concave, in fact, for any infinite convex combination
Y%, Q, of measures in M1 (N),

Hpax (n7 i auQu) 2> iauHmax(naQu) (23)
v=1 v=1

and, if the right hand side is finite, the inequality is strict
unless all @), with «,, > 0 are identical.

Proof: By Theorem 11 and its proof,

—Inn!+ i fn(ai)

i=1

Himax(n, Q) (24)

with the functions f, : [0,1] = R} defined by

fn(q) = —ngln g + Zln k!- <Z> F(1—gm k. (25

k=0

A straight forward calculation shows that

" n = n—2 n—k—
o =G a3 (", )0 —am

and upper-bounding the logarithmic term by 5 gives the
inequality f;(q) < —%(1— q)" !, hence each function f,
is strictly concave and the result follows by (24). |

k+2

For n = 1, Theorem 12 reduces to the usual concavity
property of the entropy function.

Lastly, let us consider the model P(n, Q) in case @ has
finite support. Then the Hy,,,-distribution , identified in
Theorem 11 as the empirical distribution P(Q,---, Q) is
nothing but the multinomial distribution determined by
@, denoted by MULT (n, Q), say. We may now combine the
concavity of Hyax(n,-) established in Theorem 12 and the
obvious symmetry of this function with Theorem 11. In
this way we obtain the following result, generalizing parts
of Theorems 8 and 9:

Theorem 13: Let r > 2 and n > 2 be natural num-
bers. Among all generalized empirical distributions cor-
responding to independent random variables Xi,---,X,
with values in {1,---,r}, the multinomial distribution
MULT(n, Q) with @ the uniform distribution on {1,--- ,7}
has maximal entropy.

For the case when only multinomial distributions are
considered in the model, this result was proved, again both
by Mateev and by Shepp and Olkin.

VII. DISCUSSION
A. Theory

This correspondence and previous research demonstrate
that the Hmax/Rmin-game is useful when setting up nat-
ural models reflecting our knowledge in a given situation.
Typically, the kind of results one can expect from this ap-
proach are two-fold: Identification of interesting distribu-
tions and associated limit theorems, possibly accompanied
by certain inequalities, facilitated by e.g. (3) and (4). Fu-
ture extensions may involve extra structure, say in the form
of Markov kernels, side information or symmetry.

Theorem 3, which was overlooked in [25], is a key re-
sult. Note that the proof given does not depend on previ-
ous results. Therefore, this correspondance is largely self-
contained. Previous research consists of the authors papers
[24] and [25], and then, we point to Kazakos [17] and, for
games covering also the continuous case, Haussler [11]. In
Harremoés and Topsge [10] further results, actually devel-
oped after first submission of the present manuscript, can
be found.

Regarding the controversial definition of a Hpay- dis-
tribution, requiring besides maximal entropy only essential
consistency, note that it follows from Theorem 5 (with P,,’s
independent of n) that it does not really matter if, to a
given model, you add the essentially consistent distribu-
tions or even all distributions in the closure of the model.
And if you do that, the normally accepted definition is of
course all you need. On the other hand, it is awkward only
to work with models which are closed. Indeed, the most
frequently studied models are those given by moment con-
straints and, typically, these models are not closed.

A fundamental phenomenon is the possibility that the
equality H(P*) = Hpax may not hold for any consistent
or essentially consistent distribution. As examples show, cf.



[13], [24] or, for a more conclusive study, [10], this situation
may occur.

This also explains the importance of the Hp,,,-attractor
as it does allow for a discontinuity or loss of entropy
(H(P*) < Hmax) and yet, if a maximum entropy distri-
bution exists, this is the one to search for. Originally, the
notion of Hyax-attractor was defined differently, cf. [24],
requiring only normal convergence (i.e. convergence in to-
tal variation) rather than convergence in divergence for
asymptotically optimal sequences. But as the stronger con-
vergence property does in fact hold for the main category
of models — those in equilibrium — and as convergence in
divergence appears to be the right kind of convergence to
work with for information theoretical investigations, the
chosen definition appears justified.

If we turn the attention to differential entropy and
the associated maximum entropy principle, the same phe-
nomenon of loss of entropy may take place. The reader is
referred to [7] for an illuminating discussion.

Further comments on continuity considerations concerns
Theorem 5. In the case of entropy-continuous models P,
we cannot in general assert that the limit model P is also
entropy continuous, thus P} may not converge in entropy
to P*. An example to illustrate this point can be extracted
from [24], Theorem 21, case (d) (start with the limit model
and consider approximating models by restricting the sup-
port of the distributions to larger and larger finite sets).

Another comment is that probably P, L P does not hold
generally in Theorem 5. However, the author is not aware
of an example to illustrate this.

One may consider the concept of Hpax-attractor as a key
object of study, quite independently of the game theoretical
setting. In this connection we emphasize that existence of
the H.x-attractor can be established in a number of cases
not covered by Theorem 2. Simple examples with a finite
alphabet points to this (consider for example the model
consisting only of the two distributions with point masses
(1,0) and (3, 2), respectively).

In order to state more general existence results for the
H.c-attractor, we introduce the notation h = Hpyay (P)
and Py = {P € P|H(P) > t} for t < h. It follows from The-
orem 2 that if there exists ¢ < h such that Hmax(P;) < b (in
which case equality must hold), then the Hpax- attractor
exists. If we weaken the condition and assume only that

lim Hpax(co(Py)) < h, (26)
t—h

the existence of a “weak” Hpay- attractor P* follows, one
for which P, Y pP* for every asymptotically optimal se-
quence (P,),>1. A strengthening of this result to one as-
serting the existence of the usual “strong” Hmax- attractor
(one with P, B P*) is not possible, even for a finite alpha-

bet, as simple examples will show. For finite A, (26) is also
necessary for the existence of a weak Hp,x- attractor.

B. Applications

The type of problems treated in Section IV are well
known, even classical. This also concerns more general
models defined by moment conditions. From the reference
list we may quote [14], [15], [13], [24] and [25], but there are
many other sources from physics, chemistry, statistics (ex-
ponential families) and information theory. Kapur [16] con-
tains a comprehensive bibliography. The game theoretical
approach, however, is not standard. It leads more directly
to an understanding of such models than other approaches
(typically based on optimization via the introduction of
Lagrange multipliers). The search for stable codes is in-
strumental in this respect.

Regarding Section V, we again stress the game theoreti-
cal treatment. For a more direct approach, see Harremoés
[9] where one also finds detailed approximations relating
binomial distributions to the limiting Poisson distribution.

We also want to emphasize the conjecture, going back
to Shepp and Olkin [23],that h(p:,--- ,p,) is concave in
(p1,-+* ,pn), where h(p1,--- ,p,) denotes the entropy of
the Bernoulli sum of independent Bernoulli variables with
success probabilities, respectively, p1,--- ,p,. For partial
results in this direction, see [23] and [9].

In Section VI we generalized one of Mateev and Shepp
and Olkin’s results to a vector valued setting. We now con-
sider the possibility of a generalization in another direction.
Let A and n with 0 < A < n be given and put p = % Then
BIN(n,p) is the Hpax-distribution of the model B, (X).
This result, due to Mateev (somewhat put away in the
proof of Corollary 2 of [21]) and to Shepp and Olkin [23],
was an important part of Theorem 8. Tt is equivalent to the
following inequality (with notation as in Theorem 7):

H(P*)>HP,*Pyx---xP,), (27)
valid for distributions Py, P,,---, P, which are all sup-
ported by {0,1}. To realize the stated equivalence, sim-
ply note that all Py are of the form P, = BIN(1, p), that
P = BIN(1,p) with p = L 37 p; and recall that the dis-
tribution of a sum of independent random variables is the
convolution of the corresponding individual distributions.

It is natural to inquire if the above inequality holds un-
der less stringent conditions on the support of the distri-
butions Pj,. Though interesting results in this direction
may hold, it seems that (27) is a very special and per-
haps in some sense unique instance of such results. This is
illustrated by the simple example for which n = 2 and
P = (§,%,%,-),Pp = (3,0,%,--+) (in terms of the
point probabilities associated with the elements in A* =
{0, ].,_2,_ }) One finds that _Pl * P2 = (%, %, %, %, %, . )
and PxP = (2, 2 3L, %,2754,; -), hence H(Py*P,) =
§1n2 +1In3 =~ 1.5607 and H(P* P) = ZlIn2+ ZIn3 —
251n 5 &~ 1.5241. Therefore, (27) does not hold in this case.

As we have seen, Hoeffding’s inequality, Theorem 7, may
be considered to lie behind (27). It is noteworthy that



whereas (27) itself appears difficult to generalize, far reach-
ing generalizations of Hoeffding’s inequality (weakening the
requirement on the support of the Py’s and generalizing the
whole setting to one based on abstract semigroup theory)
have appeared, cf. Bickel and van Zwet [3], Christensen and
Ressel [6] and Ressel [22]. How, or if, these results can be
exploited in information theoretical studies is unclear.

Shepp and Olkin’s paper [23] contains a reference to Ho-
effding’s inequality. Really, the reference is only one of anal-
ogy. Shepp and Olkin do not make any use of the inequal-
ity, only note its qualitative similarity with problems and
results they are led to consider. In this context it is interest-
ing that with the present approach, Hoeffding’s inequality
is the central tool needed for the discussion of models de-
fined in terms of Bernoulli sums.

As noted several times, the results concerning binomial
and multinomial distributions owes much to Mateev and to
Shepp and Olkin. The results, as far as they involve max-
imum entropy considerations, are quite natural and were
perhaps considered by several mathematicians before they
were settled. Both Mateev and Shepp and Olkin refer to
sources of inspiration from others — M.B. Malyutov, B.
Lindstrom [18] and A.D. Wyner.

Py

Py P,

D
Fig. 2. Tllustration of models with A = {0, 1, 2}.

Finally, we shall illustrate some of the findings regard-
ing the binomial and geometric distributions by looking at
the case n = 2. The simplex M1 (A;) together with various
models are shown in Figure 2. The points Py, P; and P,
represent the deterministic distributions concentrated in 0,
1 and 2, respectively. The line ABCD represent the model
G2()) for some X\ < 1, whereas AB represents the model
Bsy()\). Note that for higher values of n, B, ()\) is not con-
vex (but still connected). The points B and C represent the
H,,-distributions of By(A) and Go(A), respectively. The
curve PyBEP;, represents the model of all binomial distri-
butions BIN(2,p); 0 < p < 1, and E the associated maxi-
mum entropy distribution. Similarly, the curve PoCUP; is
the model of geometric distributions and U, the uniform
distribution, the corresponding maximum entropy distri-
bution.
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