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HOMOGENEOUS DIFFUSIONS

LetB = (Bt)t�0 be an n-dimensional Brownian motion on (
;F ;F t; P ) :
Consider the SDE

n� 1| {z }
dXt =

n� 1| {z }
b(Xt) dt+

n� n| {z }
�(Xt)

n� 1| {z }
dBt (1)

with b : D ! Rn and � : D ! Rn�n continuous functions de�ned
on an open subset D � Rn with �(x) non-singular for all x 2 D:b is
the drift function, � the di¤usion function.

Assume that for every x0 2 D; (1) has a unique strong solution with
X0 � x0 such that

Px0
\
t�0

(Xt 2 D) = 1:

X is an n-dimensional homogeneous di¤usion with state space D (an
ill-de�ned concept). If X0 � x0; write Px0 instead of P ; if X0 is
random with distribution �; write P � instead of P:

Existence and uniqueness of solution process X: OK if D = Rn and
b and � are Lipschitz and of linear growth. Important problem: for
general D; what are the conditions that must be imposed on b and �
in order for X to stay inside D and never hit the boundary of D? We
shall answer this for n = 1 with D = ]l; r[ ; allowing also for l = �1
or r =1 � for n � 2 there are no general results.

Note. It is perfectly possible to de�ne e.g one-dimensional di¤usions
with a state interval that is closed or half-open ([l; r] or ]l; r] ; [l; r[),
di¤usions with re�ecting or absorbing boundaries. Here we focus on
open intervals ]l; r[ :

Let Qx0 denote the distribution of X when X0 � x0; ie Qx0 is the
probability measure on

�
W (n);H(n)

�
given by

Qx0(H) = Px0 (X 2 H)
�
H 2H(n)

�
:

Here W (n) is the space of all continuous functions w : [0;1[ ! Rn

and H(n) is the smallest �-algebra of subsets making all mappings
w 7! w(t) for t � 0 measurable.



X AS A MARKOV PROCESS

X is a time-homogeneous Markov process: for all t � 0; H 2H(n);

Px0
�
(Xt+u)u�0 2 H jF t

�
(!) = QXt(!) (H) :

X is even strong Markov: for all stopping times �; if � (!) <1;

Px0
�
(X�+u)u�0 2 H jF �

�
(!) = QX� (!) (H) :

Example. If � is a �nite stopping time, (B�+u �B�)u�0 is a Brownian
motion independent of F � :

De�ne the transition probabilities

ps (x;B) = P
x (Xs 2 B) (B 2 Bn):

Then (take H =
n
w 2W (n) : w(s) 2 B

o
)

Px (Xt+s 2 B jF t) (!) = ps (Xt(!); B)
and

pt+s(x;B) = Exps (Xt; B)

=
Z
D
ps (y;B) pt(x; dy);

the Chapman-Kolmogorov equations.

The transition operators act on bounded R-valued Borel functions,

Ptf(x) = E
xf(Xt) =

Z
D
f(y) pt (x; dy)

and form a semigroup (the Chapman-Kolmogorov equations),

Pt+sf � Pt (Psf) � Ps (Ptf) :

The in�nitesimal generator A acts on bounded f such that the following
limit exists for all x 2 D;

Af(x) = lim
t#0

1

t
(Ptf(x)� f(x)) :

Assume that f 2 C2 (twice di¤erentiable with continuous second order
partial derivatives). By Itô�s formula, if X0 � x0;

f(Xt) = f(x0) +
Z t
0

eAf(Xs) +Mt

where

eAf(x) = nX
i=1

bi(x)
@

@xi
f(x) +

1

2

nX
i;j=1

cij(x)
@2

@xi@xj
f(x)

where C =
�
cij
�
= ��> andM is the local martingale

Mt =
nX

i;j=1

Z t
0

@

@xi
f(Xs)�ij(Xs) dBj;s:

If both f and eAf are bounded on D; M is a true martingale and

Ptf(x0) = f(x0) +
Z t
0
Ps
� eAf� (x0) ds (2)

which implies that

lim
t#0

1

t
(Ptf(x0)� f(x0)) = eAf(x0):

For such f therefore

Af � eAf:
A famous generalisation of (2) is Dynkin�s formula: if � is a stopping
time with Ex0� <1; then for f as above

Ex0f(X�) = f(x0) + E
x0
Z �
0
Af(Xs) ds:



ONE-DIMENSIONAL DIFFUSIONS

From now on, n = 1 and D = ]l; r[ is an open interval. Recall
that x 7! �(x) 6= 0 and is continuous, we may therefore assume that
�(x) > 0 for all x 2 ]l; r[ :

First we look for f = S 2 C2 such that S(X) is a local martingale, ie
we require that AS � 0 on ]l; r[ ;

b(x)S0(x) +
1

2
�2(x)S00(x) = 0 (l < x < r) :

If S is strictly increasing this is equivalent to�
logS0

�0
(x) = �2b(x)

�2(x)
:

Thus

S0(x) = exp

 
�
Z x
x1

2b(y)

�2(y)
dy

!
with x1 2 ]l; r[ an arbitrarily chosen reference point. Any primitive S
of S0 is called a scale function for X. S is not uniquely determined, but
if S is a scale function, all others are of the form �+ �S with � 2 R,
� > 0:

Note. Any scale function S is strictly increasing and �nite on ]l; r[ :
One can therefore de�ne the limits

S(r) = lim
x"r

S(x); S(l) = lim
x#l
S(x)

with �1 < S(r) � 1; �1 � S(l) <1:

Example. For Brownian motion B itself, S(x) = x is a scale function.

Assume that X0 � x0 2 ]l; r[ : For c 2 ]l; r[ ; l < a < x0 < b < r

de�ne

�c = inf ft � 0 : Xt = cg
�ab = inf ft � 0 : Xt = a or Xt = bg

with inf ? =1:

Fact. Px0 (�ab <1) = 1 (even Ex0�ab <1; see below).

The process
�
S
�
X�ab^t

��
t�0 is a bounded local martingale, hence a

true martingale, so

Ex0S
�
X�ab^t

�
= S(x0)

for t � 0: Let t ! 1 and use dominated convergence and the fact
above to obtain

Ex0S
�
X�ab

�
= S(x0):

But, again using the fact,

Ex0S
�
X�ab

�
= S(b)Px0 (� b < �a) + S(a)P

x0 (�a < � b)

so

Px0 (� b < �a) = 1� Px0 (�a < � b)

=
S(x)� S(a)
S(b)� S(a)

:



Example. For B itself,

Px0 (� b < �a) = 1� Px0 (�a < � b) =
x� a
b� a

:

Let S be a given scale function for X. De�ne the matching speed
measure m for X by

m(B) =
Z
B
k(x) dx (B � ]l; r[)

where

k(x) =
2

�2(x)S0 (x)
:

Note. If S is replaced by �+ �S (with � > 0), k is replaced 1�k:

Example. For B itself, m is 2 (!) times Lebesgue measure.

Fact. For l < a < b < r;

f(x) =
Z x
a

(Sy � Sa) (Sb� Sx)
Sb� Sa

k(y) dy

+
Z b
x

(Sx� Sa) (Sb� Sy)
Sb� Sa

k(y) dy

is the unique solution for x 2 [a; b] of the second order di¤erential
equation

Af � �1

with the boundary conditions f(a) = f(b) = 0:

Therefore, for x0 2 [a; b]

Ex0f
�
X�ab

�
= f (x0)� Ex0�ab:

But

Ex0f
�
X�ab

�
= f(b)Px0 (� b < �a) + f(a)P

x0 (�a < � b)

= 0

so

Ex0�ab = f(x0):

Example. For B we �nd

f(x0) = (x0 � a) (b� x0) :

Note. From S0 and k one can uniquely recover �2 and b: Thus S0 and
k characterise X:

MAIN THEOREM. Let b; � be continuous functions on ]l; r[ with � >
0; and let S be a scale function with k the matching density for the
speed measure. In order that the SDE

dXt = b(Xt) dt+ � (Xt) dBt; X0 � x0
for every x0 2 ]l; r[ have a unique strong solution such that

Px0
\
t�0

(Xt 2 ]l; r[) = 1;

it is necessary and su¢ cient that (i) and (ii) hold:
(i) S(r) =1 or S(r) <1;

R r
x (S(r)� S(y)) k(y) dy =1;

(ii) S(l) = �1 or S(l) > �1;
R x
l (S(y)� S(l)) k(y) dy =1.

In both (i) and (ii), x 2 ]l; r[ may be chosen arbitrarily.



THEOREM. Assume that (i) and (ii) from the MAIN THEOREM hold.
(a) For any l < a < x < b < r;

Px (� b <1) =
S(x)� S(l)
S(b)� S(l)

;

Px (�a <1) =
S(r)� S(x)
S(r)� S(a)

:

In particular, Px (� b <1) = 1 i¤ S(l) = �1 and Px (�a <1) = 1
i¤ S(r) =1:
(b) If S(r) <1; S(l) = �1; then for all x 2 ]l; r[

Px
�
lim
t!1

Xt = r
�
= 1:

If S(r) =1; S(l) > �1; then for all x 2 ]l; r[

Px
�
lim
t!1

Xt = l
�
= 1:

(c) If �1 < S(l) < S(r) <1; then for all x 2 ]l; r[

Px
�
lim
t!1

Xt = r
�
= 1� Px

�
lim
t!1

Xt = l
�

=
S(x)� S(l)
S(r)� S(l)

2 ]0; 1[ :

(d) If S(l) = �1; S(r) =1; X is recurrent and for all x 2 ]l; r[ ;

Px
\

c2]l;r[

\
t�0

[
s>t

(Xs = c) ;

ie X passes through all levels c 2 ]l; r[ arbitrarily far out in time.

Example. B itself is recurrent on R.

Example. The Ornstein-Uhlenbeck process is the solution to the SDE

dXt = ��Xt dt+ dBt
where � 6= 0: This obviously (!) has a unique strong R-valued solution
corresponding to any initial condition X0 � x0 with x0 2 R.

We �nd

S0(x) = exp
�Z x
0
2�y dy

�
= e�x

2
;

k(x) = 2e��x
2

and are forced to take l = �1; r =1:

If � > 0; then S(l) = �1; S(r) =1 and X is recurrent.

If � < 0; then �1 < S(l) < S(r) <1 and

Px
�
lim
t!1

Xt =1
�
= 1� Px

�
lim
t!1

Xt = �1
�

=

s
j�j
�

Z x
�1

e�y
2
dy:

Exercise. Consider the Ornstein-Uhlenbeck process with � < 0: Accord-
ing to (i) from the MAIN THEOREM it must necessarily hold thatZ 1

x
(S(1)� S(y))k(y) dy

=
Z 1
x

Z 1
y
e�z

2
dz 2e��y

2
dy =1:

Please verify directly that the double integral is in fact in�nite (this is
not quite as simple as it sounds)!



Example. For n � 2; the n-dimensional Bessel process is the one-
dimensional (!) homogeneous di¤usion de�ned as

X = kBk =

0@ nX
i=1

B2i

1A12
where B = (B1; : : : ;Bn) is an n-dimensional Brownian motion. It can
be shown that X when staying away from 0 solves the SDE

dXt =
n� 1
2Xt

dt+ d eBt
with eB a one-dimensional Brownian motion. This SDE of course �ts
into the framework of the MAIN THEOREM and we (you) now verify
that for all integers n � 2 the SDE de�nes a homogeneous di¤usion on
]l; r[ = ]0;1[:

S0(x) = x�(n�1); k(x) = 2xn�1

and (i), (ii) from the MAIN THEOREM follow.

It also follows that for n = 2; X is recurrent while for n � 3

Px
�
lim
t!1

Xt =1
�
= 1:

For the n-dimensional Brownian motion B this implies the following:
B0 = (0; : : : ; 0) but immediately after the start, B leaves the origin
and never returns. For n � 3; kBtk ! 1 as t!1 while for n = 2;
at arbitrarily large times, Bt gets arbitrarily close to the origin without
ever getting there.

Fact. If X is the 2-dimensional Bessel process on ]0;1[ with X0 � x0;
we know that S(X) = logX is a local martingale. It is remarkable
however that logX is not a true martingale: one may show that

Ex0 logX1 = log x0 +
Z 1
x0

1

r
e�

1
2r
2
dr > log x0:

Exercise. Consider the following generalisation of the SDE for the Bessel
processes,

dXt =
a� 1
2Xt

dt+ dBt

(with B now a one-dimensional Brownian motion). For which values of
a 2 R does this de�ne a homogeneous di¤usion on ]l; r[ = ]0;1[?

Example. The Cox-Ingersoll-Ross process is the homogeneous di¤usion
X on ]l; r[ = ]0;1[ solving

dXt = (a+ bXt) dt+ �
p
Xt dBt:

We must of course investigate for which values of a; b 2 R and � > 0

(i) and (ii) from the MAIN THEOREM are satis�ed. But

S0(x) = x
�2a
�2e

� 2b
�2
x
;

k(x) =
2

�2
x
2a
�2
�1
e
2b
�2
x
:

An e¤ort evaluating various integrals reveals that (i) and (ii) are satis�ed
i¤

2a � �2:

With this satis�ed, S(0) = �1 always and S (1) = 1 i¤ either
b < 0 or b = 0; 2a = �2: Thus X is recurrent i¤ b < 0 or b = 0;

2a = �2; and in all other cases Px (limXt =1) = 1:

Exercise. Please carry out the e¤ort required for evaluating the integrals
relevant for verifying (i) and (ii) for the Cox-Ingersoll-Ross process.



STATIONARITY

LetX be a one-dimensional homogeneous di¤usion on ]l; r[ with contin-
uous drift b and continuous di¤usion function � > 0; satisfying (i) and
(ii) from the MAIN THEOREM. Suppose that X0 is an F 0-measurable
random variable, independent of B. Then X is stationary if all Xt have
the same distribution (that of X0) and the common distribution � is
the stationary initial distrbution for X. When does such a � exist and
how is it found?

If � exists and X0 has distribution �; because X is a Markov process,
it is strictly stationary: for any t > 0, the process (Xt+u)u�0 has the
same distribution as X itself.

Suppose � exists and that X0 has distribution �. For f : ]l; r[ ! R

bounded with Af = bf 0 + 1
2�
2f 00 bounded,

f(Xt) = f(X0) +
Z t
0
Af (Xs) ds+Mt

with M a true martingale, E�Mt = 0 for all t: But E�f(Xt) =
E�f(X0) so

0 = E�
Z t
0
Af (Xs) ds

=
Z t
0
E�Af (Xs) ds

= t� (Af)

writing

� (g) =
Z r
l
g(x)� (dx) :

Thus � (Af) = 0 for all f 2 C2 bounded with Af bounded. Guessing
that � has a nice density �; take f 2 C2 such that f 0 � 0 on ]l; a]
and [b; r[ for some a < b 2 ]l; r[ : Then

0 =
Z r
l

�
b(x)f 0(x) +

1

2
�2(x)f 00(x)

�
�(x) dx

=
Z r
l
f 0(x)

�
b(x)�(x)� 1

2

�
�2(x)�(x)

�0�
dx

by partial integration. Let f 0 vary to obtain

b(x)�(x) =
1

2

�
�2(x)�(x)

�0
or

b(x)

�2(x)

�
�2(x)�(x)

�
=
1

2

�
�2(x)�(x)

�0
:

Solve for

�2(x)�(x) = exp

 Z x
x1

2b(y)

�2(y)
dy

!

=
1

S0(x)
:

It follows that � is proportional to the density k for the speed measure,
in particular it must hold that

R r
l k(x) dx <1: Note that then, since (i)

and (ii) from the main theorem are satis�ed, necessarily X is recurrent,
S(r) =1; S(l) = �1: We have argued part of the following result:



THEOREM. The di¤usion X on ]l; r[ with drift b and di¤usion function
�; has a stationary initial distribution � i¤ the speed measurem satis�es

K = m (]l; r[) <1:

In that case

� =
1

K
m:

In order for � to exist it is necessary (but not su¢ cient) that X be
recurrent.

Example. B itself is null-recurrent: recurrent but no stationary initial
distribution.

Example. The Ornstein-Uhlenbeck process on ]l; r[ = R,

dXt = ��Xt dt+ dBt
with � 6= 0 we know X to be recurrent i¤ � > 0: In that case there is a
stationary initial distribution, the normal distribution with mean 0 and
variance 1

2�:

Example. The Cox-Ingersoll-Ross process on ]l; r[ = ]0;1[ ;

dXt = (a+ bXt) dt+ �
p
Xt dBt

is well de�ned i¤ 2a � �2 and recurrent i¤ in addition b < 0 or
b = 0; 2a = �2: If b = 0; 2a = �2 the di¤usion is null-recurrent.
If b < 0; 2a � �2 there is a stationary initial distribution, which is a
�-distribution.

CHANGES OF MEASURE

Let X be a one-dimensional Brownian motion with drift � 2 R and
variance �2 > 0 and initial state X0 � x0 2 R, ie

Xt = x0 + �t+ �Bt

with B a standard one-dimensional Brownian motion. Let t0 > 0 and
suppose that X is observed completely on the time interval [0; t0] �
unrealistic in practice, but of great (!) theoretical interest. How should
one estimate the parameters � and �2 from this complete observation
of X?

Fact. For B itself it holds that (with probability 1) simultaneously for
all t � 0

lim
n!1

[2nt]X
i=1

�
B i
2n
�Bi�1

2n

�2
= t; (3)

a result that carries over to X in the following form,

lim
n!1

[2nt]X
i=1

�
X i
2n
�Xi�1

2n

�2
= �2t:

(3) expresses that the quadratic variation process for B is the determin-
istic function t 7! t:

This fact shows that one can estimate �2 precisely (!) from the complete
observation of X on [0; t0] ; eg

�2 = lim
n!1

1

t0

[2nt0]X
i=1

�
X i
2n
�Xi�1

2n

�2
:



So it only remains to estimate �: Suppose for convenience that �2 = 1
and recall (?) that Z de�ned by

Zt = exp
�
�Bt �

1

2
�2t

�
(4)

is a martingale with EZt = 1:

Let Qx0� denote the distribution of X (when �2 = 1), in particular

Qx0 = Q
x0
0 is the distribution of the process B+ x0: Recall that each

Q
x0
� is a probability measure on the space W = W (1) of continuous

functions w : [0;1[ ! R, equipped with the �-algebra H = H(1):

De�ning X�t :W ! R by

X�t (w) = w(t);

H is the smallest �-algebra of subsets of W that make all X�t mea-
surable. We then de�ne the �ltration (Ht)t�0 with Ht the smallest
�-algebra that make all X�s for s � t measurable.

THEOREM. For all t > 0 and H 2Ht;

Q
x0
� (H) =

Z
H
exp

�
�(X�t � x0)�

1

2
�2t

�
dQx0: (5)

Note. The integrand on the right of course comes from (4). Because
EZt = 1; for H = W the integral = 1 and therefore, as a function of
H de�nes a probability measure on W: To verify that this probability is
Q
x0
� requires work!

The main message from (5) is that for the statistical problem of esti-
mating � when X is completely observed on [0; t0] (and �2 = 1), as
likelihood function we may use

� 7! exp
�
�(Xt0 � x0)�

1

2
�2t0

�
:

Maximising this yields the simple maximum-likelihood estimator

b� = 1

t0
(Xt0 � x0):

We shall consider a more general statistical estimation problem. Sup-
pose given a family of SDEs for homogeneous one-dimensional di¤usions
on a given interval ]l; r[ ;

dXt = b� (Xt) dt+ � (Xt) dBt; X0 � x0
with � an unknown parameter (one- or many-dimensional). It is assumed
of course that all b� and � are continuous with � > 0 and that for all
�; (i) and (ii) from the MAIN THEOREM are satis�ed. Note that the
di¤usion function � does not depend on �: this is the analogue to
assuming variance �2 of the Brownian motion known in the discussion
above.

Note. The quadratic variation process for X for any � is�Z t
0
�2 (Xs) ds

�
t�0

which does not depend on �:

Let Qx0� denote the distribution of X when the true parameter value
is � � a probability measure on W which should now be the space of
continuous functions w : [0;1[ ! ]l; r[ with the de�nitions of X�t ;
H and Ht adjusted accordingly. Fix an arbitrary value �0 of � and
consider the problem of �nding for each � a process Z�� (adapted to
(Ht)) de�ned on W such that for all t > 0; H 2Ht;

Q
x0
� (H) =

Z
H
Z��;t dQ

x0
�0
: (6)

With X completely observed on [0; t] we would then use

� 7! Z��;t

as likelihood function and �nd the maximum-likelihood estimator by
maximisation. For this procedure, the choice of �0 does not matter!
(Why?)



The problem of whether the Z�� exist and what they look like is certainly
non-trivial. One simple observation is the following: in order that the
integral on the right of (6) de�ne a probability when H varies, we must
obviously have Z

W
Z��;t dQ

x0
�0
= 1

and Z��;t � 0: Furthermore, since for 0 � s < t and H 2 Hs we also
have H 2Ht so

Q
x0
� (H) =

Z
H
Z��;s dQ

x0
�0
=
Z
H
Z��;t dQ

x0
�0
;

ie for every �; Z�� is a Q
x0
�0
-martingale!

THEOREM. With respect to the reference value �0; Z�� is given by

Z��;t = exp

0@Z t
0

(b� � b�0) (X
�
s )

�2 (X�s )
dX�s �

1

2

Z t
0

(b2� � b
2
�0
) (X�s )

�2 (X�s )
ds

1A

The theorem is an example of a Girsanov type theorem. The expression
for Z�;t is an example of a Cameron-Martin formula.

Warning. It is absolutely essential for the validity of the theorem that
for all �; X is a di¤usion on ]l; r[ with � (x) > 0: Don�t ever try to use
it without verifying this! To be on the safe side, it also helps that b and
� are continuous.

LÉVY PROCESSES

A (one-dimensional) Lévy process X de�ned on (
;F ;F t; P ) is an
adapted cádlág process (right-continuous with left limits) with indepen-
dent and stationary increments, ie for every s � 0; t > 0; Xt+s �Xs
is independent of F s with a distribution �t that depends on t only.

The �t form a convolution semigroup, �s+t = �s � �t which is weakly
continuous, ie

lim
t#0

Z
f(x)�t(dx) = f(0)

for all bounded and continuous f:

According to the classical Lévy-Kinchine formula, the characteristic func-
tion for �t has the form

Eeiu(Xt+s�Xs) =
Z
eiux �t(dx)

= exp t

(
iub� 1

2u
2�2 +

Z
Rn0

�
eiux � 1� iux1[�1:1](x)

�
� (dx)

)
:

Here b 2 R; �2 � 0 and �; the Lévy measure, is a positive measure on
Rn0 such thatZ

[�";"]n0
x2 �(dx) <1; � (Rn [�"; "]) <1

for all " > 0:



If � � 0 and X0 � 0; X is Brownian motion with drift b and variance
�2 (degenerating into Xt � bt if �2 = 0).

If Z
[�1;1]n0

jxj �(dx) <1

one may rewrite the Lévy-Kinchine formula in the simpler formZ
eiux �t(dx) = exp t

(
iueb� 1

2u
2�2 +

Z
Rn0

�
eiux � 1

�
� (dx)

)
(7)

where eb = b� Z
[�1;1]n0

x �(dx):

Taking eb = �2 = 0 in (7) and � = �"1; where � > 0; �t becomes
the Poisson distribution with parameter �t and if X0 � 0; X = N

is the homogeneous Poisson process with intensity parameter �; N0 �
0: N increases in jumps of size 1; is constant between jumps and if
Tn = inf ft : Nt = ng is the time of the n�th jump (T0 � 0), the
waiting times Vn = Tn � Tn�1 between successive jumps are iid and
exponentially distributed, P (Vn > v) = e��v for v � 0:

If eb = �2 = 0 in (7) and � = �� where � > 0 and � is a probability
measure on Rn0; the resulting X with X0 � 0 is a compound Poisson
process starting from 0 that may also be described as follows:

Xt =
NtX
n=1

Un

where N with N0 � 0 is Poisson with intensity � and the Un are iid
with distribution � and independent of N.

In general the Lévy measure � completely describes the jump structure
for X. Introduce the process �X of jumps,

�Xt = Xt �Xt�
and for B � Rn0 de�ne the process N(B) by

Nt(B) =
X

0<s�t
1(�Xs2B);

the number of jumps on [0; t] of a size 2 B: Write N = N (Rn0) for
the process counting the total number of jumps.

THEOREM. (i) X is continuous i¤ � � 0:
(ii) If � (Rn0) <1; N t <1 for all t:
(iii) If � (Rn0) = 1; Ns+t � Ns = 1 for all s � 0; t > 0 and the
random set ft : �Xt 6= 0g of jump times is a countably in�nite and
dense subset of ]0;1[ :
(iv) If B � Rn0 with 0 < �(B) <1; then N(B) is a Poisson process
with intensity �(B): If B1; : : : ; Bn � Rn0 are pairwise disjoint with
all �

�
Bj
�
2 ]0;1[ ; then the Poisson processes N (B1) ; : : : ;N (Bn)

are independent.
(v) If

R
[�1;1]n0 jxj �(dx) <1; then for all tX

0<s�t
j�Xsj <1:

(vi) If
R
]0;1] x �(dx) =1; (

R
[�1;0[ x �(dx) = �1) then for all s � 0;

t > 0

X
s<r�s+t

�Xr1(�Xr>0) =1;

0@ X
s<r�s+t

�Xr1(�Xr<0) = �1

1A :



Fact. Given a weakly continuous convolution semigroup (�t) of prob-
ability measures on R; the following recipe can be used for �nding the
Lévy measure:

�(f) = lim
t#0

1

t
�t(f) (8)

for all bounded and continuous functions f vanishing in a neighborhood
of 0: (Notation: � (f) =

R
f(x) �(dx):)

Example. For the �-process, �t is the �-distribution with scale parame-
ter � > 0 and shape parameter �t with � > 0; ie �t is the probability
on ]0;1[ with density

1

��t� (�t)
x�t�1e�

x
� (x > 0):

Using (8) one �nds that � is the positive measure on ]0;1[ with density

�

x
e�

x
� (x > 0) :

We see that the �-process has in�nitely many jumps on any (non-
degenerate) interval and that the sum of the jumps is �nite on any
�nite interval. In fact,

Xt = X0 +
X

0<s�t
�Xs;

ie X�X0 is the sum of its jumps. Also (7) holds with � the measure
just found and eb = �2 = 0:

Example. For the Cauchy process, �t is the Cauchy distribution with
scale parameter t; ie �t has density

1

�t
�
1 + x

t

�2
on R. The Lévy measure has density

1

�x2

on Rn0. So the Cauchy process has in�nitely many jumps on any
interval and on any interval the sum of the positive jumps and the sum
of the negative jumps are both in�nite. The heavy tails of the Lévy
measure entails that the process often has huge jumps. Altogether, the
Cauchy process is pretty wild!

It is perfectly possible to de�ne new processes from Lévy processes by
solving stochastic di¤erential equations, typically of the form

dYt = b(Yt) dt+ � (Yt�) dXt (9)

where X is a Lévy process with X0 � 0:

It is important to write � (Yt�) instead of � (Yt): if X has jumps, so
will Y (if � (y) 6= 0), in fact

�Yt = � (Yt�)�Xt;

ie

Yt = Yt� + � (Yt�)�Xt (10)

so the value of Yt is determined in a simple manner from the value just
before the jump and the jump of X.



A particularly simple case is that of di¤usions with (few) jumps: in (9)
let X be the sum of a standard Brownian motion B and an independent
compound Poisson process. In between jumps (9) is just an SDE driven
by B; which we know how to solve, and at the jump times one uses
(10) to obtain the solution.

This however exhibits one weakness of using SDEs driven by Lévy processes
to construct new processes: if � (y) 6= 0 for all y; Y will jump pre-
cisely when X does, so the jumps for Y arrive according to a Poisson
process, which may be too restrictive a structure. To achieve a higher
grade of �exibility one may combine SDEs of the form (9) with change
of measure techniques.


