Parameter estimation in diffusion processes from observations of first hitting-times

Susanne Ditlevsen

Department of Mathematical Sciences
University of Copenhagen, Denmark Email: susanne@math.ku.dk

Summer school 4-12 August 2008, Middelfart, Denmark

Motivating example: Neurons (nerve cells)

Motivating example: Neurons (nerve cells)

1

Underlying process

The model

$$
\mathrm{d} X_{t}=\mu\left(X_{t}\right) \mathrm{d} t+\sigma\left(X_{t}\right) \mathrm{d} W(t) ; X_{0}=x_{0}
$$

X_{t} : membrane potential at time t after a spike
x_{0} : initial voltage (the reset value following a spike)
An action potential (a spike) is produced when the membrane voltage X_{t} exceeds a firing threshold

$$
S(t)=S \quad>\quad X(0)=x_{0}
$$

After firing the process is reset to x_{0}. The interspike interval T is identified with the first-passage time of the threshold,

$$
T=\inf \left\{t>0: X_{t} \geq S\right\}
$$

Membrane potential

time

Threshold regimes

Data

We observe the spikes: the first-passage-time of X_{t} through S :

Data: $\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ i.i.d. realizations of the random variable T.

Note: There is only information on the time scale, nothing on the scale of X_{t}. Thus, obviously something is not identifiable in the model from these data, and something has to be assumed known.

Estimation

$$
\mathrm{d} X_{t}=\mu\left(X_{t}, \theta\right) \mathrm{d} t+\sigma\left(X_{t}, \theta\right) \mathrm{d} W(t) \quad ; \quad \theta \in \Theta \subseteq \mathbb{R}^{p}
$$

Transition density: $\quad y \mapsto f_{\theta}(t-s, x, y)$

Corresponding
distribution function: $\quad F_{\theta}(t-s, x, y)=\int^{y} f_{\theta}(t-s, x, u) d u$

$$
T=\inf \left\{t>0: X_{t} \geq S\right\}
$$

Data: $\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ i.i.d. realizations of the random variable T.
How do we estimate θ ?

Maximum likelihood estimation

... is possible if we know the distribution of T.
Let $p_{\theta}(t)$ be the probability density function of T.

Recall:

Likelihood function:	$L_{n}(\theta)$	$=\prod_{i=1}^{n} p_{\theta}\left(t_{i}\right)$
Log-likelihood function:	$\log L_{n}(\theta)$	$=\sum_{i=1}^{n} \log p_{\theta}\left(t_{i}\right)$
Score function(s):	$\partial_{\theta} \log L_{n}(\theta)$	$=\sum_{i=1}^{n} \partial_{\theta} \log p_{\theta}\left(t_{i}\right)$
Estimator $\hat{\theta}$ is such that	$\partial_{\theta} \log L_{n}(\hat{\theta})$	$=0$

Likelihood function:
Log-likelihood function:

Estimator $\hat{\theta}$ is such that

Example: Brownian motion with drift

$$
\mathrm{d} X_{t}=\mu \mathrm{d} t+\sigma \mathrm{d} W(t) \quad ; \quad \mu>0, \sigma>0 \quad ; \quad X_{0}=0<S
$$

Then

$$
p_{\theta}(t)=\frac{S}{\sqrt{2 \pi \sigma^{2} t^{3}}} \exp \left(-\frac{(S-\mu t)^{2}}{2 \sigma^{2} t}\right)
$$

Thus

$$
\begin{aligned}
L_{n}(\theta)=\prod_{i=1}^{n} p_{\theta}\left(t_{i}\right) & =\prod_{i=1}^{n}\left(\frac{S}{\sqrt{2 \pi \sigma^{2} t_{i}^{3}}}\right) \exp \left(-\sum_{i=1}^{n} \frac{\left(S-\mu t_{i}\right)^{2}}{2 \sigma^{2} t_{i}}\right) \\
\log L_{n}(\theta)=\sum_{i=1}^{n} \log p_{\theta}\left(t_{i}\right) & =\sum_{i=1}^{n} \log \left(\frac{S}{\sqrt{2 \pi \sigma^{2} t_{i}^{3}}}\right)-\sum_{i=1}^{n} \frac{\left(S-\mu t_{i}\right)^{2}}{2 \sigma^{2} t_{i}}
\end{aligned}
$$

Score functions:

$$
\begin{aligned}
\partial_{\mu} \log L_{n}(\theta) & =\sum_{i=1}^{n} \frac{\left(S-\mu t_{i}\right)}{\sigma^{2}} \\
\partial_{\sigma^{2}} \log L_{n}(\theta) & =-\frac{n}{2 \sigma^{2}}+\sum_{i=1}^{n} \frac{\left(S-\mu t_{i}\right)^{2}}{2\left(\sigma^{2}\right)^{2} t_{i}}
\end{aligned}
$$

Maximum likelihood estimators:

$$
\begin{aligned}
\hat{\mu} & =\frac{S}{\bar{t}} \\
\hat{\sigma}^{2} & =S^{2}\left(\frac{1}{n} \sum_{i=1}^{n} \frac{1}{t_{i}}-\frac{1}{\bar{t}}\right)
\end{aligned}
$$

where

$$
\bar{t}=\frac{1}{n} \sum_{i=1}^{n} t_{i}
$$

The conditional expectation is

$$
E\left[X_{t} \mid X_{0}=0\right]=\mu \tau\left(1-e^{-t / \tau}\right)
$$

The conditional variance is

$$
\operatorname{Var}\left[X_{t} \mid X_{0}=x_{0}\right]=\frac{\tau \sigma^{2}}{2}\left(1-e^{-2 t / \tau}\right)
$$

Thus $\left(X_{t} \mid X_{0}=0\right) \sim N\left(\mu \tau\left(1-e^{-t / \tau}\right), \frac{\tau \sigma^{2}}{2}\left(1-e^{-2 t / \tau}\right)\right)$.

Asymptotically (in absence of a threshold) $X_{t} \sim N\left(\mu \tau, \tau \sigma^{2} / 2\right)$.

Example: The Ornstein-Uhlenbeck model

Consider the Ornstein-Uhlenbeck process as a model for the membrane potential of a neuron:

$$
\mathrm{d} X_{t}=\left(-\frac{X_{t}}{\tau}+\mu\right) \mathrm{d} t+\sigma \mathrm{d} W_{t} ; \quad X_{0}=x_{0}=0
$$

where
X_{t} : membrane potential at time t after a spike
τ : membrane time constant, reflects spontaneous voltage decay (>0)
μ : characterizes constant neuronal input
σ : characterizes erratic neuronal input
x_{0} : initial voltage (the reset value following a spike)

12

Two firing regimes:
Suprathreshold: $\mu \tau \gg S$ (deterministic firing - the neuron is active also in the absence of noise)
Subthreshold: $\mu \tau \ll S$ (firing is caused only by random fluctuations (stochastic or Poissonian firing)

Model parameters: $\mu, \sigma, \tau, x_{0}, S$

Assumed known:

Intrinsic or characteristic parameters of the neuron: τ, x_{0}, S

$$
\tau \approx 5-50 \mathrm{msec}, S-x_{0} \approx 10 \mathrm{mV} ;\left(\text { We set } x_{0}=0\right)
$$

To be estimated:
Input parameters: μ (in $[\mathrm{mV} / \mathrm{msec}])$ and σ (in $[\mathrm{mV} / \sqrt{\mathrm{msec}}])$

Example: Ornstein-Uhlenbeck process

$$
\mathrm{d} X_{t}=\left(-\frac{X_{t}}{\tau}+\mu\right) \mathrm{d} t+\sigma \mathrm{d} W(t) ; \tau>0, \mu \in \mathbb{R}, \sigma>0 ; X_{0}=0<S
$$

The distribution of $T=\inf \left\{t>0: X_{t} \geq S\right\}$ is only known if $S=\mu \tau$ (the asymptotic mean of X_{t} in absence of a threshold):

$$
p_{\theta}(t)=\frac{2 S \exp (2 t / \tau)}{\sqrt{\pi \tau^{3} \sigma^{2}}(\exp (2 t / \tau)-1)^{3 / 2}} \exp \left(-\frac{S^{2}}{\sigma^{2} \tau(\exp (2 t / \tau)-1)}\right)
$$

Maximum likelihood estimator ($\mu=S / \tau$ by assumption):

$$
\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n} \frac{2 S^{2}}{\tau\left(\exp \left(2 t_{i} / \tau\right)-1\right)}
$$

We reformulate to the equivalent dimensionless form

$$
\mathrm{d}\left(\frac{X_{t}}{S}\right)=\left(-\frac{X_{t}}{S}+\frac{\mu \tau}{S}\right) \mathrm{d}\left(\frac{t}{\tau}\right)+\frac{\sigma \sqrt{\tau}}{S} \mathrm{~d}\left(\frac{W_{t}}{\sqrt{\tau}}\right)
$$

or

$$
\mathrm{d} Y_{s}=\left(-Y_{s}+\alpha\right) \mathrm{d} s+\beta \mathrm{d} W_{s}, \quad Y_{0}=0
$$

where

$$
s=\frac{t}{\tau}, Y_{s}=\frac{X_{t}}{S}, W_{s}=\frac{W_{t}}{\sqrt{\tau}}, \alpha=\frac{\mu \tau}{S}, \beta=\frac{\sigma \sqrt{\tau}}{S}
$$

and $T / \tau=\inf \left\{s>0: Y_{s} \geq 1\right\}$.

$$
\mathrm{d} Y_{s}=\left(-Y_{s}+\alpha\right) \mathrm{d} s+\beta \mathrm{d} W_{s}, \quad Y_{0}=0
$$

$$
\begin{aligned}
& E\left[Y_{s} \mid Y_{0}=0\right]=\alpha\left(1-e^{-s}\right) \\
& \operatorname{Var}\left[Y_{t} \mid Y_{0}=0\right]=\frac{1}{2} \beta^{2}\left(1-e^{-2 s}\right)
\end{aligned}
$$

Let $f_{T / \tau}(s)$ be the density of T / τ.
An exact expression is only known for $\alpha=1$:

$$
f_{T / \tau}(s)_{\alpha=1}=\frac{2 e^{2 s}}{\sqrt{\pi} \beta\left(e^{2 s}-1\right)^{3 / 2}} \exp \left(-\frac{1}{\beta^{2}\left(e^{2 s}-1\right)}\right)
$$

The maximum likelihood estimator:

$$
\alpha=1: \quad \check{\beta}^{2}=\frac{1}{N} \sum_{i=1}^{N} \frac{2}{e^{2 s_{i}}-1}
$$

Ricciardi \& Sato, 1988 derived series expressions for the moments of T. In particular

$$
E[T / \tau]=\frac{1}{2} \sum_{n=1}^{\infty} \frac{2^{n}}{n!} \frac{(1-\alpha)^{n}-(-\alpha)^{n}}{\beta^{n}} \Gamma\left(\frac{n}{2}\right)
$$

The expression is difficult to work with, especially if $|\alpha| \gg 1$ (strongly sub- or suprathreshold) because of the canceling effects in the alternating series. The expression for the variance includes the digamma function also.

Inoue, Sato \& Ricciardi, 1995, proposed computer intensive methods of estimation by using the empirical moments of T.

Example: Ornstein-Uhlenbeck process

The Laplace transform of T :

$$
E\left[e^{k T / \tau}\right]=\frac{\exp \left\{\frac{\alpha^{2}}{2 \beta^{2}}\right\} D_{k}\left(\frac{\sqrt{2} \alpha}{\beta}\right)}{\exp \left\{\frac{(\alpha-1)^{2}}{2 \beta^{2}}\right\} D_{k}\left(\frac{\sqrt{2}(\alpha-1)}{\beta}\right)}=\frac{H_{k}\left(\frac{\alpha}{\beta}\right)}{H_{k}\left(\frac{(\alpha-1)}{\beta}\right)}
$$

for $k<0$, where $D_{k}(\cdot)$ and $H_{k}(\cdot)$ are parabolic cylinder and Hermite functions, respectively.

$$
d X_{t}=\left(-\frac{X_{t}}{\tau}+\mu\right) d t+\sigma d W_{t} ; \quad X_{0}=x_{0}=0
$$

with solution

$$
X_{t}=\mu \tau\left(1-e^{-\frac{t}{\tau}}\right)+\sigma \int_{0}^{t} e^{-\frac{(t-s)}{\tau}} d W_{s}
$$

Define the martingale:

$$
Y_{t}=\left(\mu \tau-X_{t}\right) e^{\frac{t}{\tau}}=\mu \tau-\sigma \int_{0}^{t} e^{\frac{s}{\tau}} d W_{s}
$$

If $M(t)$ is a martingale, then $E[M(T \wedge t)]=E[M(0)]$

We need more than that:

Doob's Optional-Stopping Theorem

Let T be a stopping time and let $M(t)$ be a uniformly integrable martingale. Then $E[M(T)]=E[M(0)]$.

23

First observe that

$$
Y_{T \wedge t}=\left(\mu \tau-X_{T \wedge t}\right) e^{\frac{(T \wedge t)}{\tau}} \geq(\mu \tau-S) e^{\frac{(T \wedge t)}{\tau}}>0
$$

for all t if $\mu \tau>S$ (suprathreshold regime).

Set $p=2$. We have

$$
\begin{aligned}
E\left[\left|Y_{t}^{T}\right|^{2}\right] & =E\left[\left(Y_{t}^{T}\right)^{2}\right] \\
& =E\left[\left(\mu \tau-\sigma \int_{0}^{T \wedge t} e^{\frac{s}{\tau}} d W_{s}\right)^{2}\right] \\
& =(\mu \tau)^{2}-0+\sigma^{2} E\left[\left(\int_{0}^{T \wedge t} e^{\frac{s}{\tau}} d W_{s}\right)^{2}\right]
\end{aligned}
$$

Y_{t} is obviously not uniform integrable (UI) (it is equivalent to a Brownian Motion). CLAIM:

$$
Y^{T}(t):=Y(T \wedge t)
$$

the process stopped at T, is UI in certain part of the parameter region - particularly we will always assume $(\mu \tau-S)>0$ (suprathreshold regime).
We show that

$$
E\left[\left|Y_{t}^{T}\right|^{p}\right]<K
$$

for all t and some $p>1$ and some positive $K<\infty$.

24

$$
M(t)=\left(\int_{0}^{t} e^{\frac{s}{\tau}} d W_{s}\right)^{2}-\int_{0}^{t} e^{\frac{2 s}{\tau}} d s
$$

is a martingale due to Itôs isometry:

$$
E\left(\int_{0}^{t} f(s, \omega) d W_{s}\right)^{2}=\int_{0}^{t} E\left[f(s, \omega)^{2}\right] d s
$$

such that $E[M(T \wedge t)]=E[M(0)]=0$. This yields

$$
\begin{aligned}
E\left[\left(\int_{0}^{T \wedge t} e^{\frac{s}{\tau}} d W_{s}\right)^{2}\right] & =E\left[\int_{0}^{T \wedge t} e^{\frac{2 s}{\tau}} d s\right] \\
& =E\left[\frac{\tau}{2}\left(e^{\frac{2(T \wedge t)}{\tau}}-1\right)\right] \\
& \leq \frac{\tau}{2} E\left[e^{\frac{2 T}{\tau}}\right]
\end{aligned}
$$

Thus, we have:

$$
E\left[\left|Y_{t}^{T}\right|^{2}\right] \leq(\mu \tau)^{2}+\sigma^{2} \frac{\tau}{2} E\left[e^{\frac{2 T}{\tau}}\right]
$$

We need to show that this is finite.

If $(\mu \tau-S)^{2}>\frac{\tau \sigma^{2}}{2}$ then

$$
\frac{(\mu \tau)^{2}-\frac{\tau \sigma^{2}}{2}}{(\mu \tau-S)^{2}-\frac{\tau \sigma^{2}}{2}} \geq E\left[e^{\frac{2(T \wedge t)}{\tau}}\right]
$$

Taking limits on both sides we obtain

$$
\frac{(\mu \tau)^{2}-\frac{\tau \sigma^{2}}{2}}{(\mu \tau-S)^{2}-\frac{\tau \sigma^{2}}{2}} \geq \lim _{t \rightarrow \infty} E\left[e^{\frac{2(T \wedge t)}{\tau}}\right]=E\left[e^{\frac{2 T}{\tau}}\right]
$$

since T is almost surely finite.

Define the martingale (to be trusted):

$$
Y_{2}(t)=(\mu \tau-X(t))^{2} e^{\frac{2 t}{\tau}}+\frac{\tau \sigma^{2}}{2}\left(1-e^{\frac{2 t}{\tau}}\right)
$$

such that

$$
E\left[Y_{2}(T \wedge t)\right]=E\left[Y_{2}(0)\right]=(\mu \tau)^{2}
$$

which yields

$$
\begin{aligned}
(\mu \tau)^{2} & =E\left[(\mu \tau-X(T \wedge t))^{2} e^{\frac{2(T \wedge t)}{\tau}}+\frac{\tau \sigma^{2}}{2}\left(1-e^{\frac{2(T \wedge t)}{\tau}}\right)\right] \\
& \geq\left((\mu \tau-S)^{2}-\frac{\tau \sigma^{2}}{2}\right) E\left[e^{\frac{2(T \wedge t)}{\tau}}\right]+\frac{\tau \sigma^{2}}{2}
\end{aligned}
$$

BINGO! Doob is good.

If $S<\mu \tau$ (suprathreshold regime) and $(\mu \tau-S)^{2}>\frac{\tau \sigma^{2}}{2}$ then

$$
E\left[Y^{T}(0)\right]=E\left[Y^{T}(T)\right]
$$

such that

$$
\begin{aligned}
\mu \tau=E\left[Y^{T}(0)\right] & =E\left[Y^{T}(T)\right] \\
& =E\left[(\mu \tau-X(T)) e^{\frac{T}{\tau}}\right] \\
& =(\mu \tau-S) E\left[e^{\frac{T}{\tau}}\right]
\end{aligned}
$$

Beautiful result

$$
E\left[e^{\frac{T_{S}}{\tau}}\right]=\frac{\mu \tau}{\mu \tau-S}
$$

With a little more work (and more restrictions on parameter space):

$$
E\left[e^{\frac{2 T_{S}}{\tau}}\right]=\frac{(\mu \tau)^{2}-\frac{\tau \sigma^{2}}{2}}{(\mu \tau-S)^{2}-\frac{\tau \sigma^{2}}{2}}
$$

31

k	$\lambda^{(k)}$	$E\left[e^{k \beta T}\right]$
1	0	$\mu \tau /(\mu \tau-S)$
2	$\frac{1}{\sqrt{2}}$	$\left((\mu \tau)^{2}-\tau \sigma^{2} / 2\right) /\left((\mu \tau-S)^{2}-\tau \sigma^{2} / 2\right)$
3	$\sqrt{\frac{3}{2}}$	$\frac{\mu \tau}{(\mu \tau-S)}\left((\mu \tau)^{2}-\frac{3 \tau \sigma^{2}}{2}\right) /\left((\mu \tau-S)^{2}-\frac{3 \tau \sigma^{2}}{2}\right)$
4	$\sqrt{\frac{3+\sqrt{6}}{2}}$	$\frac{\left((\mu \tau)^{2}-\frac{3 \tau \sigma^{2}}{2}\right)^{2}-\frac{3 \tau^{2} \sigma^{4}}{2}}{\left((\mu \tau-S)^{2}-\frac{3 \tau \sigma^{2}}{2}\right)^{2}-\frac{3 \tau^{2} \sigma^{4}}{2}}$

Tabel 1: The first 4 moments of $e^{\beta T}$, where T is the first-passage time of an Ornstein-Uhlenbeck process with parameters $\theta=(\mu, \tau, \sigma)$ through a constant threshold S, which is valid for $\theta \in \Theta^{(k)}=\left\{\theta \mid \mu \tau>S, \sqrt{\tau \sigma^{2}}<\underset{33}{\left.(\mu \tau-S) / \lambda^{(k)}\right\} .}\right.$

In fact, generally we have (Ditlevsen, 2007):

Let $(\mu, \tau, \sigma)=\theta \in \Theta^{(k)}=\left\{\theta \mid \mu \tau>S, \sqrt{\sigma^{2} \tau}<(\mu \tau-S) / \lambda^{(k)}\right\}$ for $k \in \mathbb{N}$, where $\lambda^{(k)}$ is the largest root of the k^{\prime} th Hermite polynomial. Then

$$
E\left[e^{\lambda T / \tau}\right]=\frac{H_{\lambda}\left(\frac{\mu \tau}{\sigma \sqrt{\tau}}\right)}{H_{\lambda}\left(\frac{(\mu \tau-S)}{\sigma \sqrt{\tau}}\right)}
$$

for $\lambda \leq k$, where H_{λ} is the Hermite function.

Explicit expressions for the parameters

$$
\begin{gathered}
\mu=\frac{S E\left[e^{\frac{T_{S}}{\tau}}\right]}{\tau\left(E\left[e^{\frac{T_{S}}{\tau}}\right]-1\right)} \\
\sigma^{2}=\frac{2 S^{2} \operatorname{Var}\left[e^{\frac{T_{S}}{\tau}}\right]}{\tau\left(E\left[e^{\frac{2 T_{S}}{\tau}}\right]-1\right)\left(E\left[e^{\frac{T_{S}}{\tau}}\right]-1\right)^{2}}
\end{gathered}
$$

Straightforward estimators:

$$
\begin{aligned}
\hat{E}[Z] & =\frac{1}{n} \sum_{i=1}^{n} e^{t_{i} / \tau} \\
\hat{E}\left[Z^{2}\right] & =\frac{1}{n} \sum_{i=1}^{n} e^{2 t_{i} / \tau}
\end{aligned}
$$

where $t_{i}, i=1, \ldots, n$, are the i.i.d. observations of the FPT's. Naive estimators of the parameters could then be

$$
\begin{aligned}
\hat{\mu} & =\frac{S\left(\frac{1}{n} \sum_{i=1}^{n} e^{t_{i} / \tau}\right)}{\tau\left(\frac{1}{n} \sum_{i=1}^{n} e^{t_{i} / \tau}-1\right)} \\
\hat{\sigma}^{2} & =\frac{2 S^{2}\left(\left(\frac{1}{n} \sum_{i=1}^{n} e^{2 t_{i} / \tau}\right)-\left(\frac{1}{n} \sum_{i=1}^{n} e^{t_{i} / \tau}\right)^{2}\right)}{\tau\left(\left(\frac{1}{n} \sum_{i=1}^{n} e^{2 t_{i} / \tau}\right)-1\right)\left(\left(\frac{1}{n} \sum_{i=1}^{n} e^{t_{i} / \tau}\right)-1\right)^{2}}
\end{aligned}
$$

Feller process

$$
\begin{gathered}
\mathrm{d} Y_{s}=\left(-Y_{s}+\alpha\right) \mathrm{d} s+\frac{\beta}{\sqrt{\alpha}} \sqrt{Y_{s}} \mathrm{~d} W_{s} \\
E\left[Y_{s} \mid Y_{0}=y_{0}\right]=\alpha+\left(y_{0}-\alpha\right) e^{-s} \\
\operatorname{Var}\left[Y_{s} \mid Y_{0}=y_{0}\right]=\frac{\beta^{2}}{2}\left(1-e^{-s}\right)\left[1+\left(\frac{2 y_{0}}{\alpha}-1\right) e^{-s}\right]
\end{gathered}
$$

In Ditlevsen \& Lansky, 2005, the following moments were derived

$$
\begin{aligned}
E\left[e^{T / \tau}\right] & =\frac{\alpha}{\alpha-1} \quad \text { if } \alpha>1 \\
E\left[e^{2 T / \tau}\right] & =\frac{\alpha^{2}-\beta^{2} / 2}{(\alpha-1)^{2}-\beta^{2} / 2} \quad \text { if } \alpha-1>\frac{\beta}{\sqrt{2}}
\end{aligned}
$$

which provides explicit estimators

$$
\hat{\alpha}=\frac{Z_{1}}{Z_{1}-1}, \quad \hat{\beta}^{2}=\frac{2\left(Z_{2}-Z_{1}^{2}\right)}{\left(Z_{2}-1\right)\left(Z_{1}-1\right)^{2}}
$$

where

$$
Z_{1}=\frac{1}{N} \sum_{i=1}^{N} e^{s_{i}}, \quad Z_{2}=\frac{1}{N} \sum_{i=1}^{N} e^{2 s_{i}}
$$

Ditlevsen \& Lansky, 2006 give the moments
$E\left[e^{T / \tau}\right]=\frac{\alpha-y_{0}}{\alpha-1} \quad$ if $\quad \alpha>1$
$E\left[e^{2 T / \tau}\right]=\frac{2 \alpha\left(\alpha-y_{0}\right)^{2}+\beta^{2}\left(\alpha-2 y_{0}\right)}{2 \alpha(\alpha-1)^{2}+\beta^{2}(\alpha-2)} \quad$ if $\sqrt{1+2(\alpha / \beta)^{2}}<1+\frac{2 \alpha(\alpha-1)}{\beta^{2}}$
Moment estimators:

$$
\hat{\alpha}=\frac{Z_{1}-y_{0}}{Z_{1}-1}
$$

and

$$
\hat{\beta}^{2}=\frac{2\left(1-y_{0}\right)^{2}\left(Z_{2}-Z_{1}^{2}\right)}{2\left(Z_{1}-1\right)\left(Z_{2}-y_{0}\right)-\left(Z_{1}-y_{0}\right)\left(Z_{2}-1\right)} \hat{\alpha}
$$

39

Parameter estimation

Sample t_{1}, \ldots, t_{n} of independent observations of T. Fix θ. RHS can be estimated at t from the sample by the average

$$
\begin{aligned}
\operatorname{RHS}(t ; \theta) & =\int_{0}^{t} p_{\theta}(u)\left(1-F_{\theta}(t-u, 1,1)\right) d u \\
& \approx
\end{aligned}
$$

$$
\operatorname{RHS}_{\mathrm{emp}}(t ; \theta)=\frac{1}{n} \sum_{i=1}^{n}\left(1-F_{\theta}\left(t-t_{i}, 1,1\right)\right) 1_{\left\{t_{i} \leq t\right\}}
$$

since for fixed t it is the expected value of

$$
1_{T \in[0, t]}\left(1-F_{\theta}(t-T, 1,1 ; \theta)\right)
$$

with respect to the distribution of T.

Parameter estimation

Error measure:

$$
L(\theta)=\sup _{t>0}\left|\left(\operatorname{RHS}_{\mathrm{emp}}(t)-\operatorname{LHS}(t)\right) / \omega\right|
$$

where $\omega=\sup _{t>0}\left(1-F_{\theta}\left(t, x_{0}, 1 ; \theta\right)\right)$.

Estimator:

$$
\tilde{\theta}=\arg \min _{\theta} L(\theta)
$$

(Ditlevsen and Ditlevsen 2008; Ditlevsen and Lansky 2007)
(Review paper: Lansky and Ditlevsen 2008)

Parameter estimation

$$
\begin{aligned}
\operatorname{LHS}(s) & = \\
\Phi\left(\frac{\alpha\left(1-e^{-s}\right)-1}{\sqrt{1-e^{-2 s}} \beta / \sqrt{2}}\right) & =\int_{0}^{s} f(u) \Phi\left(\frac{\alpha-1}{\beta / \sqrt{2}} \sqrt{\frac{1-e^{-(s-u)}}{1+e^{-(s-u)}}}\right) \mathrm{d} u \\
& =\operatorname{RHS}(s)
\end{aligned}
$$

Example: Ornstein-Uhlenbeck process

Let $f(s)$ be the density function for the time t / τ from zero to the first crossing of the level 1 by Y. The probability

$$
P[Y(s)>1]=\Phi\left(\frac{\alpha\left(1-e^{-s}\right)-1}{\sqrt{1-e^{-2 s}} \beta / \sqrt{2}}\right)
$$

can alternatively be calculated by the transition integral

$$
P[Y(s)>1]=\int_{0}^{s} f(u) \Phi\left(\frac{\alpha-1}{\beta / \sqrt{2}} \frac{1-e^{-(s-u)}}{\sqrt{1-e^{-2(s-u)}}}\right) \mathrm{d} u
$$

44

Parameter estimation

Sample: $s_{1} \leq s_{2} \leq \ldots \leq s_{n}$, iid observations of T / τ.

$$
\operatorname{RHS}(s) \approx \frac{1}{n} \sum_{i=1}^{n} \Phi\left(\frac{\alpha-1}{\beta / \sqrt{2}} \sqrt{\frac{1-e^{-\left(s-s_{i}\right)}}{1+e^{-\left(s-s_{i}\right)}}}\right) 1_{\left\{s_{i} \leq s\right\}}
$$

since it is the expected value of

$$
1_{U \in[0, s]} \Phi\left(\frac{\alpha-1}{\beta / \sqrt{2}} \sqrt{\frac{1-e^{-(s-U)}}{1+e^{-(s-U)}}}\right)
$$

with respect to the distribution of $U=T / \tau$ for given α and β.

Sample: $s_{1} \leq s_{2} \leq \ldots \leq s_{n}$, iid observations of T / τ.

Figur 1: Auditory neurons. A: Spontaneous record;
$\hat{\alpha}=0.85 ; \hat{\beta}=0.09$. B: Stimulated record; $\hat{\alpha}=4.8 ; \hat{\beta}=0.63$. Note different time axes.

Feller process

$$
\begin{gathered}
\mathrm{d} Y_{s}=\left(-Y_{s}+\alpha\right) \mathrm{d} s+\frac{\beta}{\sqrt{\alpha}} \sqrt{Y_{s}} \mathrm{~d} W_{s} \\
E\left[Y_{s} \mid Y_{0}=y_{0}\right]=\alpha+\left(y_{0}-\alpha\right) e^{-s} \\
\operatorname{Var}\left[Y_{s} \mid Y_{0}=y_{0}\right]=\frac{\beta^{2}}{2}\left(1-e^{-s}\right)\left[1+\left(\frac{2 y_{0}}{\alpha}-1\right) e^{-s}\right]
\end{gathered}
$$

Chapman-Kolmogorov integral equation:
$1-F_{\chi^{2}}\left[a(s), \nu, \delta\left(s, y_{0}\right)\right]=\int_{0}^{s} f(u)\left\{1-F_{\chi^{2}}[a(s-u), \nu, \delta(s-u, 1)]\right\} \mathrm{d} u$ $a(s)=(4 \alpha) / \beta^{2}\left(1-e^{-s}\right), \delta\left(s, y_{0}\right)=\left(4 \alpha y_{0} / \beta^{2}\right)\left[e^{-s} /\left(1-e^{-s}\right)\right]$ and $\nu=4(\alpha / \beta)^{2}$.

48

normalized parameters ± 1 (α left, β right)
Fig. 2. Normalized empirical distribution functions of the sample of 100 joint estimates of α and β compared to the standardized normal distribution function.

51

Fig. 5. Comparison of the (normalized) left-hand side of the integral equation (25) (smooth curves) with the empirical (normalized) right-hand side given by (26) for five simulated samples of 100 first-passage times of the OU process of the level 1 corresponding to the true α-values $1,2,3,4,11$, respectively, and the true $\beta=1$ (right to left). For these samples the estimates of (α, β) according to

Fig. 3. Scatterplots of the 996 pairs of estimates of (α, β), each estimated from a sample of 10 simulated first-passage times corresponding to the true values $\alpha=2$ and $\beta=1$.

52

55

		statistics of 100 estimates:	
regime	$\beta=1$	average $\pm \mathrm{SSD}$	
	$\alpha=$	$\hat{\alpha}$	$\tilde{\alpha}$
subthreshold	0.8		0.79 ± 0.09
threshold	1	1.10 ± 0.06	1.00 ± 0.08
suprathreshold	2	1.99 ± 0.10	1.98 ± 0.11
suprathreshold	3	2.97 ± 0.09	2.95 ± 0.10
suprathreshold	4	3.94 ± 0.12	3.90 ± 0.11
\approx Wiener	11	10.96 ± 0.11	9.88 ± 0.15

		statistics of 100 estimates: regime	
		average $\pm \mathrm{SSD}$ $\hat{\beta}$	
subthreshold	0.8	$\tilde{\beta}$	

