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The model

dXt = µ(Xt) dt+ σ(Xt) dW (t) ; X0 = x0

Xt: membrane potential at time t after a spike

x0: initial voltage (the reset value following a spike)

An action potential (a spike) is produced when the membrane voltage
Xt exceeds a firing threshold

S(t) = S > X(0) = x0

After firing the process is reset to x0. The interspike interval T is
identified with the first-passage time of the threshold,

T = inf{t > 0 : Xt ≥ S}.
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Data

We observe the spikes: the first-passage-time of Xt through S:

Data: {t1, t2, . . . , tn} i.i.d. realizations of the random variable T .

Note: There is only information on the time scale, nothing on the
scale of Xt. Thus, obviously something is not identifiable in the
model from these data, and something has to be assumed known.
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Estimation

dXt = µ(Xt, θ) dt+ σ(Xt, θ) dW (t) ; θ ∈ Θ ⊆ IRp

Transition density: y 7→ fθ(t− s, x, y)

Corresponding

distribution function: Fθ(t− s, x, y) =
∫ y

fθ(t− s, x, u)du

T = inf{t > 0 : Xt ≥ S}.

Data: {t1, t2, . . . , tn} i.i.d. realizations of the random variable T .

How do we estimate θ?
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Maximum likelihood estimation

... is possible if we know the distribution of T .

Let pθ(t) be the probability density function of T .

Recall:

Likelihood function: Ln(θ) =
∏n
i=1 pθ(ti)

Log-likelihood function: logLn(θ) =
∑n
i=1 log pθ(ti)

Score function(s): ∂θ logLn(θ) =
∑n
i=1 ∂θ log pθ(ti)

Estimator θ̂ is such that ∂θ logLn(θ̂) = 0
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Example: Brownian motion with drift

dXt = µdt+ σ dW (t) ; µ > 0, σ > 0 ; X0 = 0 < S

Then

pθ(t) =
S√

2πσ2t3
exp

(
− (S − µt)2

2σ2t

)

Thus

Ln(θ) =
n∏

i=1

pθ(ti) =
n∏

i=1

(
S√

2πσ2t3i

)
exp

(
−

n∑

i=1

(S − µti)2
2σ2ti

)

logLn(θ) =
n∑

i=1

log pθ(ti) =
n∑

i=1

log

(
S√

2πσ2t3i

)
−

n∑

i=1

(S − µti)2
2σ2ti
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Score functions:

∂µ logLn(θ) =
n∑

i=1

(S − µti)
σ2

∂σ2 logLn(θ) = − n

2σ2
+

n∑

i=1

(S − µti)2
2(σ2)2ti

Maximum likelihood estimators:

µ̂ =
S

t̄

σ̂2 = S2

(
1
n

n∑

i=1

1
ti
− 1
t̄

)

where

t̄ =
1
n

n∑

i=1

ti
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Example: The Ornstein-Uhlenbeck model

Consider the Ornstein-Uhlenbeck process as a model for the
membrane potential of a neuron:

dXt =
(
−Xt

τ
+ µ

)
dt+ σ dWt ; X0 = x0 = 0.

where

Xt: membrane potential at time t after a spike

τ : membrane time constant, reflects spontaneous voltage decay (>0)

µ: characterizes constant neuronal input

σ: characterizes erratic neuronal input

x0: initial voltage (the reset value following a spike)
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The conditional expectation is

E[Xt|X0 = 0] = µτ(1− e−t/τ )

The conditional variance is

Var[Xt|X0 = x0] =
τσ2

2

(
1− e−2t/τ

)

Thus (Xt|X0 = 0) ∼ N(µτ(1− e−t/τ ), τσ
2

2

(
1− e−2t/τ

)
).

Asymptotically (in absence of a threshold) Xt ∼ N(µτ, τσ2/2).
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Two firing regimes:

Suprathreshold: µτ � S (deterministic firing - the neuron is active
also in the absence of noise)

Subthreshold: µτ � S (firing is caused only by random fluctuations
(stochastic or Poissonian firing)
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Model parameters: µ, σ, τ, x0, S

Assumed known:

Intrinsic or characteristic parameters of the neuron: τ, x0, S

τ ≈ 5− 50 msec, S − x0 ≈ 10 mV ; (We set x0 = 0)

To be estimated:

Input parameters: µ (in [mV/msec]) and σ (in [mV/
√

msec])
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Example: Ornstein-Uhlenbeck process

dXt =
(
−Xt

τ
+ µ

)
dt+ σ dW (t) ; τ > 0, µ ∈ IR, σ > 0 ; X0 = 0 < S

The distribution of T = inf{t > 0 : Xt ≥ S} is only known if S = µτ

(the asymptotic mean of Xt in absence of a threshold):

pθ(t) =
2S exp(2t/τ)√

πτ3σ2(exp(2t/τ)− 1)3/2
exp

(
− S2

σ2τ(exp(2t/τ)− 1)

)

Maximum likelihood estimator (µ = S/τ by assumption):

σ̂2 =
1
n

n∑

i=1

2S2

τ(exp(2ti/τ)− 1)
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Figure 1: Empirical densities from simulated data, each density corresponds to 10.000 ISIs
measured in ms. A: Subthreshold regime, µ = 2 V/s and σ = 1, 5 or 10 mV/

√
ms. B:

Subthreshold regime, µ = 2 V/s and σ = 1 mV/
√
ms, enlarged from panel A. C: Threshold

regime, µ = 3 V/s and σ = 1, 5 or 10 mV/
√
ms. D: Suprathreshold regime, µ = 5 V/s and

σ = 1, 5 or 10 mV/
√
ms. In all cases τ = 5 ms and S = 15 mV.

1
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We reformulate to the equivalent dimensionless form

d
(Xt

S

)
=
(
− Xt

S
+
µτ

S

)
d
( t
τ

)
+
σ
√
τ

S
d
(Wt√

τ

)

or

dYs = (−Ys + α) ds+ β dWs, Y0 = 0

where

s =
t

τ
, Ys =

Xt

S
, Ws =

Wt√
τ
, α =

µτ

S
, β =

σ
√
τ

S

and T/τ = inf{s > 0 : Ys ≥ 1}.
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dYs = (−Ys + α) ds+ β dWs, Y0 = 0

E[Ys|Y0 = 0] = α(1− e−s)

Var[Yt|Y0 = 0] =
1
2
β2(1− e−2s)

Let fT/τ (s) be the density of T/τ .
An exact expression is only known for α = 1:

fT/τ (s)α=1 =
2e2s√

πβ(e2s−1)3/2
exp

(
− 1
β2(e2s−1)

)

The maximum likelihood estimator:

α = 1 : β̌2 =
1
N

N∑

i=1

2
e2si − 1
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Example: Ornstein-Uhlenbeck process

The Laplace transform of T :

E
[
ekT/τ

]
=

exp{ α2

2β2 }Dk

(√
2α
β

)

exp{ (α−1)2

2β2 }Dk

(√
2(α−1)
β

) =
Hk

(
α
β

)

Hk

(
(α−1)
β

)

for k < 0, where Dk(·) and Hk(·) are parabolic cylinder and Hermite
functions, respectively.
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Ricciardi & Sato, 1988 derived series expressions for the moments of
T . In particular

E[T/τ ] =
1
2

∞∑

n=1

2n

n!
(1− α)n − (−α)n

βn
Γ
(n

2

)

The expression is difficult to work with, especially if |α| � 1
(strongly sub- or suprathreshold) because of the canceling effects in
the alternating series. The expression for the variance includes the
digamma function also.

Inoue, Sato & Ricciardi, 1995, proposed computer intensive methods
of estimation by using the empirical moments of T .
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dXt =
(
−Xt

τ
+ µ

)
dt+ σdWt ; X0 = x0 = 0;

with solution

Xt = µτ(1− e− t
τ ) + σ

∫ t

0

e−
(t−s)
τ dWs

Define the martingale:

Yt = (µτ −Xt)e
t
τ = µτ − σ

∫ t

0

e
s
τ dWs

22



If M(t) is a martingale, then E[M(T ∧ t)] = E[M(0)]

We need more than that:

Doob’s Optional-Stopping Theorem

Let T be a stopping time and let M(t) be a uniformly integrable
martingale. Then E[M(T )] = E[M(0)].
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Yt is obviously not uniform integrable (UI) (it is equivalent to a
Brownian Motion). CLAIM:

Y T (t) := Y (T ∧ t),

the process stopped at T , is UI in certain part of the parameter
region - particularly we will always assume (µτ − S) > 0
(suprathreshold regime).

We show that

E[|Y Tt |p] < K

for all t and some p > 1 and some positive K <∞.
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First observe that

YT∧t = (µτ −XT∧t)e
(T∧t)
τ ≥ (µτ − S)e

(T∧t)
τ > 0

for all t if µτ > S (suprathreshold regime).

Set p = 2. We have

E[|Y Tt |2] = E[(Y Tt )2]

= E[(µτ − σ
∫ T∧t

0

e
s
τ dWs)2]

= (µτ)2 − 0 + σ2E[(
∫ T∧t

0

e
s
τ dWs)2]
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M(t) = (
∫ t

0

e
s
τ dWs)2 −

∫ t

0

e
2s
τ ds

is a martingale due to Itôs isometry:

E(
∫ t

0

f(s, ω)dWs)2 =
∫ t

0

E[f(s, ω)2]ds

such that E[M(T ∧ t)] = E[M(0)] = 0. This yields

E[(
∫ T∧t

0

e
s
τ dWs)2] = E[

∫ T∧t

0

e
2s
τ ds]

= E[
τ

2
(e

2(T∧t)
τ − 1)]

≤ τ

2
E[e

2T
τ ]
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Thus, we have:

E[|Y Tt |2] ≤ (µτ)2 + σ2 τ

2
E[e

2T
τ ]

We need to show that this is finite.
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Define the martingale (to be trusted):

Y2(t) = (µτ −X(t))2e
2t
τ +

τσ2

2
(1− e 2t

τ )

such that

E[Y2(T ∧ t)] = E[Y2(0)] = (µτ)2

which yields

(µτ)2 = E[(µτ −X(T ∧ t))2e 2(T∧t)
τ +

τσ2

2
(1− e 2(T∧t)

τ )]

≥
(

(µτ − S)2 − τσ2

2

)
E[e

2(T∧t)
τ ] +

τσ2

2
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If (µτ − S)2 > τσ2

2 then

(µτ)2 − τσ2

2

(µτ − S)2 − τσ2

2

≥ E[e
2(T∧t)
τ ].

Taking limits on both sides we obtain

(µτ)2 − τσ2

2

(µτ − S)2 − τσ2

2

≥ lim
t→∞

E[e
2(T∧t)
τ ] = E[e

2T
τ ]

since T is almost surely finite.

29

BINGO! Doob is good.

If S < µτ (suprathreshold regime) and (µτ − S)2 > τσ2

2 then

E[Y T (0)] = E[Y T (T )]

such that

µτ = E[Y T (0)] = E[Y T (T )]

= E[(µτ −X(T ))e
T
τ ]

= (µτ − S)E[e
T
τ ].

30



Beautiful result

E[e
TS
τ ] =

µτ

µτ − S

With a little more work (and more restrictions on parameter space):

E[e
2TS
τ ] =

(µτ)2 − τσ2

2

(µτ − S)2 − τσ2

2
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In fact, generally we have (Ditlevsen, 2007):

Let (µ, τ, σ) = θ ∈ Θ(k) = {θ |µτ > S,
√
σ2τ < (µτ − S)/λ(k)} for

k ∈ IN, where λ(k) is the largest root of the k’th Hermite polynomial.
Then

E
[
eλT/τ

]
=

Hλ

(
µτ
σ
√
τ

)

Hλ

(
(µτ−S)
σ
√
τ

)

for λ ≤ k, where Hλ is the Hermite function.
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k λ(k) E
[
ekβT

]

1 0 µτ/(µτ − S)

2
1√
2

(
(µτ)2 − τσ2/2

)
/
(
(µτ − S)2 − τσ2/2

)

3
√

3
2

µτ

(µτ − S)

(
(µτ)2 − 3τσ2

2

)
/

(
(µτ − S)2 − 3τσ2

2

)

4

√
3 +
√

6
2

(
(µτ)2 − 3τσ2

2

)2

− 3τ2σ4

2
(

(µτ − S)2 − 3τσ2

2

)2

− 3τ2σ4

2

Tabel 1: The first 4 moments of eβT , where T is the first-passage
time of an Ornstein-Uhlenbeck process with parameters θ = (µ, τ, σ)
through a constant threshold S, which is valid for
θ ∈ Θ(k) = {θ |µτ > S,

√
τσ2 < (µτ − S)/λ(k)}.
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Explicit expressions for the parameters

µ =
SE[e

TS
τ ]

τ(E[e
TS
τ ]− 1)

σ2 =
2S2Var[e

TS
τ ]

τ(E[e
2TS
τ ]− 1)(E[e

TS
τ ]− 1)2
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Straightforward estimators:

Ê[Z] =
1
n

n∑

i=1

eti/τ

Ê[Z2] =
1
n

n∑

i=1

e2ti/τ

where ti, i = 1, . . . , n, are the i.i.d. observations of the FPT’s. Naive
estimators of the parameters could then be

µ̂ =
S( 1

n

∑n
i=1 e

ti/τ )
τ( 1

n

∑n
i=1 e

ti/τ − 1)

σ̂2 =
2S2(( 1

n

∑n
i=1 e

2ti/τ )− ( 1
n

∑n
i=1 e

ti/τ )2)
τ(( 1

n

∑n
i=1 e

2ti/τ )− 1)(( 1
n

∑n
i=1 e

ti/τ )− 1)2
.
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In Ditlevsen & Lansky, 2005, the following moments were derived

E[eT/τ ] =
α

α− 1
if α > 1

E[e2T/τ ] =
α2 − β2/2

(α− 1)2 − β2/2
if α− 1 >

β√
2

which provides explicit estimators

α̂ =
Z1

Z1 − 1
, β̂2 =

2(Z2 − Z2
1 )

(Z2 − 1)(Z1 − 1)2

where

Z1 =
1
N

N∑

i=1

esi , Z2 =
1
N

N∑

i=1

e2si
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Feller process

dYs = (−Ys + α) ds+
β√
α

√
Ys dWs

E[Ys|Y0 = y0] = α+ (y0 − α)e−s

Var[Ys|Y0 = y0] =
β2

2
(1− e−s)

[
1 +

(2y0
α
− 1
)
e−s
]
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1

S1

S2

µτ
VI

time
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Ditlevsen & Lansky, 2006 give the moments

E[eT/τ ] =
α− y0
α− 1

if α > 1

E[e2T/τ ] =
2α(α− y0)2 + β2(α− 2y0)

2α(α− 1)2 + β2(α− 2)
if
√

1 + 2(α/β)2 < 1 +
2α(α− 1)

β2

Moment estimators:

α̂ =
Z1 − y0
Z1 − 1

and

β̂2 =
2(1− y0)2(Z2 − Z2

1 )
2(Z1−1)(Z2−y0)− (Z1−y0)(Z2−1)

α̂

39

µτ

S

k =
2µ

σ2

1
2−
√

2

1

1

(20) and (21) are valid

only (20) is valid
g(k)
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The Fortet integral equation

Set S = 1. The probability

P [Xt > 1 |X0 = x0] =
∫

y>1

fθ(t, x0, y)dy = 1− Fθ(t, x0, 1) = LHS(t)

can alternatively be calculated by the transition integral

P [Xt > 1 |X0 = x0] =
∫ t

0

pθ(u)
(
1− Fθ(t− u, 1, 1)

)
du = RHS(t)

41

Parameter estimation

Sample t1, . . . , tn of independent observations of T . Fix θ.

RHS can be estimated at t from the sample by the average

RHS(t; θ) =
∫ t

0

pθ(u)
(
1− Fθ(t− u, 1, 1)

)
du

≈

RHSemp(t; θ) =
1
n

n∑

i=1

(
1− Fθ(t− ti, 1, 1)

)
1{ti≤t}

since for fixed t it is the expected value of

1T∈[0,t]

(
1− Fθ(t− T, 1, 1; θ)

)

with respect to the distribution of T .
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Parameter estimation

Error measure:

L(θ) = sup
t>0
|(RHSemp(t)− LHS(t))/ω|

where ω = supt>0(1− Fθ(t, x0, 1; θ)).

Estimator:

θ̃ = arg min
θ
L(θ)

(Ditlevsen and Ditlevsen 2008; Ditlevsen and Lansky 2007)

(Review paper: Lansky and Ditlevsen 2008)
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Example: Ornstein-Uhlenbeck process

Let f(s) be the density function for the time t/τ from zero to the
first crossing of the level 1 by Y . The probability

P [Y (s) > 1] = Φ
( α(1− e−s)− 1√

1− e−2s β/
√

2

)

can alternatively be calculated by the transition integral

P [Y (s) > 1] =
∫ s

0

f(u) Φ

(
α−1
β/
√

2
1−e−(s−u)

√
1−e−2(s−u)

)
du

44

Parameter estimation

LHS(s) =

Φ
( α(1− e−s)− 1√

1− e−2s β/
√

2

)
=
∫ s

0

f(u) Φ

(
α− 1
β/
√

2

√
1− e−(s−u)

1 + e−(s−u)

)
du

= RHS(s)

Sample: s1 ≤ s2 ≤ . . . ≤ sn, iid observations of T/τ .
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Parameter estimation

Sample: s1 ≤ s2 ≤ . . . ≤ sn, iid observations of T/τ .

RHS(s) ≈ 1
n

n∑

i=1

Φ

(
α− 1
β/
√

2

√
1− e−(s−si)

1 + e−(s−si)

)
1{si≤s}

since it is the expected value of

1U∈[0,s]Φ

(
α− 1
β/
√

2

√
1−e−(s−U)

1+e−(s−U)

)

with respect to the distribution of U = T/τ for given α and β.
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β when α > 1 increases the ISI variability, whereas in subthreshold regime [? ] showed that

the coefficient of variation was non-monotone as a function of the noise level.

Let Φ(·) be the normal cumulative distribution function. Combining (4) and (9) we

obtain

P [Ys > 1 |Y0 = 0] = Φ
( α(1− e−s)− 1√

1− e−2s β/
√

2

)
, (12)

which we estimate from the sample using (6) by

1

n

n∑

i=1

Φ

(
α− 1

β/
√

2

√
1− e−(s−si)

1 + e−(s−si)

)
1{si≤s}, (13)

where si = ti/τ . The normalizing constant is given by Φ[(α − 1)/(β/
√

2)] for α ≥ 0

and Φ[−
√

1− 2α/(β/
√

2)] for α < 0. Then α̂ and β̂ can be transformed to physically

interpretable quantities of µ and σ through (11).

Simulated data. Trajectories of the OU process were simulated according to the Euler scheme

for four different combinations of parameter values: (α, β) = (0.8,1), (1,0.1), (2,0.1), and

0.5 1.0 1.5

0
5

E

β̂

0.05 0.10 0.15

0
50

F

β̂

0.05 0.10 0.15

0
50

G

β̂

0.5 1.0 1.5

0
5

H

β̂

0.3 0.8 1.3

0
5

A

α̂
0.9 1.0 1.1

0
50

B

α̂
1.9 2.0 2.1

0
50

C

α̂
1 2 3

0
5

D

α̂

FIG. 1: Densities of estimates for simulated data based on 1000 estimates. Upper panels: Estimates

of α. Lower panels: Estimates of β. Solid black line: sample sizes of 500. Dashed black line: sample

sizes of 100. Solid grey line: sample sizes of 50. Dashed grey line: sample sizes of 10. Vertical line:

True values used in the simulations; A, E: (α, β)= (0.8, 1); B, F: (α, β)= (1,0.1); C, G: (α, β)=

(2,0.1); D, H: (α, β)= (2,1). Note different scales.
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FIG. 2: Auditory neurons. Comparison of the (normalized) right hand side of Eq. (12) (solid

curves) to the (normalized) empirical Eq. (13) (dashed curves), calculated with estimated param-

eters. Vertical axes can be interpreted as a cumulative probability, horizontal axes are ISIs (s). A:

Spontaneous record; α̂ = 0.85; β̂ = 0.09. B: Stimulated record; α̂ = 4.8; β̂ = 0.63. Note different

time axes.

the spontaneous part, we estimated α̂ = 4.79 and β̂ = 0.625, obtaining µ̂ = 1.351 V/s and

σ̂ = 0.035 V/
√

s. Note that the value of µ, which reflects intensity of stimulation, is 5–6

times larger than for the spontaneous activity.

To check the adequacy of the OU model with the estimated parameter values for these

data, Eq. (12) and the empirical Eq. (13) were compared in Fig. 2, after dividing by

Φ[(α̂− 1)/(β̂/
√

2)]. Especially the stimulated record shows a good fit.

Feller neuronal model. In many applications the OU process is unrealistic because it is

unbounded. Introducing an inhibitory reversal potential VI < x0 < S leads to model (1)

with

ν(x) = −x

τ
+ µ , σ(x) = σ

√
x− VI , (14)

where 2µ ≥ σ2. In dimensionless form it becomes

dYs = (−Ys + α) ds + (β/
√

α)
√

Ys dWs, 0 < y0 < 1, (15)

2(α/β)2 ≥ 1, where Ys = (Xt − VI)/(S − VI), α = (µτ − VI)/(S − VI), and β =

σ
√

τ
√

µτ − VI/(S − VI). Model (15) is known as the Feller process [? ? ? ], or the

CIR process in mathematical finance [? ]. The transition density follows a non-central

8

Figur 1: Auditory neurons. A: Spontaneous record;
α̂ = 0.85; β̂ = 0.09. B: Stimulated record; α̂ = 4.8; β̂ = 0.63. Note
different time axes.
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Feller process

dYs = (−Ys + α) ds+
β√
α

√
Ys dWs

E[Ys|Y0 = y0] = α+ (y0 − α)e−s

Var[Ys|Y0 = y0] =
β2

2
(1− e−s)

[
1 +

(2y0
α
− 1
)
e−s
]

Chapman-Kolmogorov integral equation:

1− Fχ2 [a(s), ν, δ(s, y0)] =
∫ s

0

f(u){1− Fχ2 [a(s− u), ν, δ(s− u, 1)]} du

a(s) = (4α)/β2(1− e−s), δ(s, y0) = (4αy0/β2)[e−s/(1− e−s)] and
ν = 4(α/β)2.
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FIG. 3: Olfactory neurons. A, B, C: Neuron that fits the models. D, E, F: Neuron that did not

fit the models. A, D: OU model, normalized comparison of the right hand side of Eq. (12) (solid

lines) to the empirical Eq. (13) (dashed lines), calculated with estimated parameters. Vertical axes

can be interpreted as a cumulative probability, horizontal axes are ISIs in seconds. B, E: Likewise

for the Feller model. C, F: Corresponding spike trains consisting of 100 spikes. Note different time

axes.

In conclusion, we have presented a newly developed method to compare stochastic diffu-

sion models with experimental data of first hitting-times, providing seemingly good estima-

tors for physical quantities previously considered very difficult to obtain. Also a diagnostic

tool for model evaluation is provided.
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Table 1
Values of α and β used in the simulations of OU realizations, and the
corresponding averages of the samples of 100 parameter estimates of α and
β± the sample standard deviation (SSD) using (16) and (29)

Regime β = 1
α =

Statistics of 100 estimates:
Average ± SSD
α̂ α̃

Subthr. 0.8 0.83 ± 0.14
Threshold 1 1.14 ± 0.08 1.01 ± 0.15
Suprathr. 2 1.99 ± 0.13 1.97 ± 0.15
Suprathr. 3 3.00 ± 0.17 2.99 ± 0.17
Suprathr. 4 3.96 ± 0.20 3.94 ± 0.21
≈Wiener 11 10.78 ± 0.36 10.76 ± 0.37

β̂ β̃

Subthr. 0.8 0.97 ± 0.10
Threshold 1 0.98 ± 0.11
Suprathr. 2 0.78 ± 0.09 0.98 ± 0.09
Suprathr. 3 0.95 ± 0.13 0.98 ± 0.09
Suprathr. 4 0.95 ± 0.11 1.00 ± 0.09
≈Wiener 11 0.98 ± 0.09 0.99 ± 0.09

All first-passage time samples contain 100 simulated observations each.
Besides the estimates in the table the estimates obtained from (11) and (12)
are β̌ = 0.97 ± 0.07 for α = 1 and α̌ = 10.32 ± 0.36, β̌ = 0.98 ± 0.0.07 for
the approximate Wiener process case.

advantage that it does not depend on the regime. In the
suprathreshold regime the α-estimator (16) performs slightly
better, but requires knowledge of the regime. On the other
hand, the α-estimator (16) is easier to implement and is
thus preferable if the regime is known to be suprathreshold.
The estimation results for β are also listed in Table 1. The
estimator (29) performs well in all cases. Only in the strong
suprathreshold regime the β-estimator (16) performs as well.
In all cases the estimator (29) is preferable.

Plots of the marginal sample distribution functions of the
100 estimate pairs obtained by the estimator (29) indicate
that the estimator can be assumed to be normally distributed
marginally, and it is thus straightforward to construct
confidence intervals. This assumption is quite good as seen
from Fig. 2. Moreover, the estimator is practically unbiased,
maybe except for the strongly suprathreshold regime, where
it shows a slight bias. This is seen in the diagrams of Figs. 8
and 9 with the scatterplots of the estimated pairs (α, β) for all
simulated cases. Assuming that the marginal distributions are
normal, by inspection of the diagrams it is not unreasonable
to adopt a binormal distribution model for the estimator pair
(α̃, β̃). It is noted that the two estimators are correlated except
in the high suprathreshold regime.

That the joint distribution of the two estimators can be
taken as binormal is anticipated as a large sample asymptotic
result sufficiently accurate for sample sizes at least as large
as investigated here (100 first-passage times). How small the
sample size can be before the normal distribution assumption
becomes too inaccurate remains to be investigated. In any
specific application on real measured data a simulation study
should be made to allow statements about the estimation
accuracy. Herein the small sample behavior of the estimators is
investigated by subdividing the data set of the 10 000 simulated
first-passage times for α = 2 and β = 1. The large sample is

Fig. 2. Normalized empirical distribution functions of the sample of 100 joint
estimates of α and β compared to the standardized normal distribution function.

Fig. 3. Scatterplots of the 996 pairs of estimates of (α, β), each estimated from
a sample of 10 simulated first-passage times corresponding to the true values
α = 2 and β = 1.

separated into 1000 samples with only 10 observations in each
sample and (α, β) is estimated for each of these. For four of
these the procedure did not converge. The 996 estimate pairs
are plotted in Fig. 3. The scatter plot indicates that even for
a sample size as small as 10 it seems reasonable to adopt the
binormal distribution for the estimator pair.

The integral equation estimation method was also applied
to data sets generated with β = 2 for the same values of α

as for β = 1 (results not shown). For this larger variance of
the underlying process, the method tends to underestimate α

slightly in the threshold and the suprathreshold regime. The
estimates for β are in all cases downward biased. As expected,
the sample standard deviations of the estimates are larger than
that for β = 1 (approximately twice as large for the estimates
of α, and one and a half times as large for the estimates of β).

6. Feller process

In many applications the OU process is physically unrealistic
particularly because it is unbounded. Even though this can be
artificially mended by using the process supu≤s Y (u), a more
reasonable model candidate is the Feller process [7], also called
the Cox–Ingersoll–Ross process in the financial literature [3].
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Table 1
Values of α and β used in the simulations of OU realizations, and the
corresponding averages of the samples of 100 parameter estimates of α and
β± the sample standard deviation (SSD) using (16) and (29)

Regime β = 1
α =

Statistics of 100 estimates:
Average ± SSD
α̂ α̃

Subthr. 0.8 0.83 ± 0.14
Threshold 1 1.14 ± 0.08 1.01 ± 0.15
Suprathr. 2 1.99 ± 0.13 1.97 ± 0.15
Suprathr. 3 3.00 ± 0.17 2.99 ± 0.17
Suprathr. 4 3.96 ± 0.20 3.94 ± 0.21
≈Wiener 11 10.78 ± 0.36 10.76 ± 0.37

β̂ β̃

Subthr. 0.8 0.97 ± 0.10
Threshold 1 0.98 ± 0.11
Suprathr. 2 0.78 ± 0.09 0.98 ± 0.09
Suprathr. 3 0.95 ± 0.13 0.98 ± 0.09
Suprathr. 4 0.95 ± 0.11 1.00 ± 0.09
≈Wiener 11 0.98 ± 0.09 0.99 ± 0.09

All first-passage time samples contain 100 simulated observations each.
Besides the estimates in the table the estimates obtained from (11) and (12)
are β̌ = 0.97 ± 0.07 for α = 1 and α̌ = 10.32 ± 0.36, β̌ = 0.98 ± 0.0.07 for
the approximate Wiener process case.

advantage that it does not depend on the regime. In the
suprathreshold regime the α-estimator (16) performs slightly
better, but requires knowledge of the regime. On the other
hand, the α-estimator (16) is easier to implement and is
thus preferable if the regime is known to be suprathreshold.
The estimation results for β are also listed in Table 1. The
estimator (29) performs well in all cases. Only in the strong
suprathreshold regime the β-estimator (16) performs as well.
In all cases the estimator (29) is preferable.

Plots of the marginal sample distribution functions of the
100 estimate pairs obtained by the estimator (29) indicate
that the estimator can be assumed to be normally distributed
marginally, and it is thus straightforward to construct
confidence intervals. This assumption is quite good as seen
from Fig. 2. Moreover, the estimator is practically unbiased,
maybe except for the strongly suprathreshold regime, where
it shows a slight bias. This is seen in the diagrams of Figs. 8
and 9 with the scatterplots of the estimated pairs (α, β) for all
simulated cases. Assuming that the marginal distributions are
normal, by inspection of the diagrams it is not unreasonable
to adopt a binormal distribution model for the estimator pair
(α̃, β̃). It is noted that the two estimators are correlated except
in the high suprathreshold regime.

That the joint distribution of the two estimators can be
taken as binormal is anticipated as a large sample asymptotic
result sufficiently accurate for sample sizes at least as large
as investigated here (100 first-passage times). How small the
sample size can be before the normal distribution assumption
becomes too inaccurate remains to be investigated. In any
specific application on real measured data a simulation study
should be made to allow statements about the estimation
accuracy. Herein the small sample behavior of the estimators is
investigated by subdividing the data set of the 10 000 simulated
first-passage times for α = 2 and β = 1. The large sample is

Fig. 2. Normalized empirical distribution functions of the sample of 100 joint
estimates of α and β compared to the standardized normal distribution function.

Fig. 3. Scatterplots of the 996 pairs of estimates of (α, β), each estimated from
a sample of 10 simulated first-passage times corresponding to the true values
α = 2 and β = 1.

separated into 1000 samples with only 10 observations in each
sample and (α, β) is estimated for each of these. For four of
these the procedure did not converge. The 996 estimate pairs
are plotted in Fig. 3. The scatter plot indicates that even for
a sample size as small as 10 it seems reasonable to adopt the
binormal distribution for the estimator pair.

The integral equation estimation method was also applied
to data sets generated with β = 2 for the same values of α

as for β = 1 (results not shown). For this larger variance of
the underlying process, the method tends to underestimate α

slightly in the threshold and the suprathreshold regime. The
estimates for β are in all cases downward biased. As expected,
the sample standard deviations of the estimates are larger than
that for β = 1 (approximately twice as large for the estimates
of α, and one and a half times as large for the estimates of β).

6. Feller process

In many applications the OU process is physically unrealistic
particularly because it is unbounded. Even though this can be
artificially mended by using the process supu≤s Y (u), a more
reasonable model candidate is the Feller process [7], also called
the Cox–Ingersoll–Ross process in the financial literature [3].
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Fig. 4. Example of realization of a Feller process.

The Feller process is bounded from below, a property which is
introduced in neuronal modeling by the action of an inhibitory
reversal potential. The process is in its dimensionless form
defined by the stochastic differential equation

dYs = (−Ys + α) ds +
β

√
α

√
YsdWs . (30)

In case 2(α/β)2
≥ 1 the process stays positive at all times

(a.s.) (in Feller’s terminology the boundary at zero is a so-
called entrance boundary defined as a boundary from which the
process can start but to which it cannot return [10], p. 234),
and the Feller process becomes asymptotically stationary as
s → ∞. An illustration of a sample path is shown in Fig. 4.
Feller has shown that the transition probability distribution is
a non-central χ2-distribution with ν = 4(α/β)2 degrees of
freedom and with conditional mean

E[Ys |Y0 = y0] = α + (y0 − α)e−s (31)

and variance

Var[Ys |Y0 = y0] =
β2

2
(1 − e−s)

[
1 +

(
2y0

α
− 1

)
e−s

]
(32)

see e.g. [3]. The standard form of the non-central χ2-
distribution with ν degrees of freedom and non-centrality
parameter δ has mean ν + δ and variance 2ν + 4δ. The
conditional mean (31) and conditional variance (32) are both
obtained if the affinity factor 1/a(s) = β2(1 − e−s)/(4α)

is applied to the standardized variable and the non-centrality
parameter is δ(s, y0) = (4αy0/β

2)[e−s/(1 − e−s)]. Thus

P(Ys ≤ y | Y0 = y0) = Fχ2 [a(s)y, ν, δ(s, y0)] (33)

where Fχ2(x, ν, δ) is the standard non-central χ2-distribution
function of ν degrees of freedom and non-centrality parameter
δ [in Matlab denoted by ncx2cdf(x, ν, δ)]. It is seen that δ →

0 as s → ∞, i.e., the asymptotic distribution is a gamma
distribution.

With these results the Fortet integral equation for the
probability density f (s) of the first-passage time T/τ through
the level 1 by the non-stationary Feller process Ys | Y0 = y0 <

Fig. 5. Comparison of the (normalized) left-hand side of the integral equation
(25) (smooth curves) with the empirical (normalized) right-hand side given by
(26) for five simulated samples of 100 first-passage times of the OU process of
the level 1 corresponding to the true α-values 1, 2, 3, 4, 11, respectively, and the
true β = 1 (right to left). For these samples the estimates of (α, β) according to
(29) are (1.212, 0.926), (1.677, 0.996), (2.657, 1.039), (4.055, 1.029), (10.801,
0.956), respectively.

1 is directly obtained as

1 − Fχ2 [a(s), ν, δ(s, y0)]

=

∫ s

0
f (u){1 − Fχ2 [a(s − u), ν, δ(s − u, 1)]}du. (34)

As for the OU process, the parameters α, β, and here also the
initial value y0 (if not known in advance) can be estimated
from a suitably large sample of first-passage times of the
Feller process by interpreting the right-hand side of (34) as an
expectation. The solid lines in the diagrams of Fig. 6 show the
good fit between the estimated two sides of (34) with y0 = 0.5
known. As starting values in the optimization procedure Eq.
(39) can be used for α and (12) for β2/α.

Series expressions for the mean of T are given in [8,11]:

E[T/τ ] =

∞∑
n=0

1 − yn+1
0

(n + 1)
n∏

i=0
(α + iβ2/2α)

(35)

[5] gives the moments

E[eT/τ
] =

α − y0

α − 1
if α > 1 (36)

E[e2T/τ
] =

2α(α − y0)
2
+ β2(α − 2y0)

2α(α − 1)2 + β2(α − 2)
if (37)√

1 + 2(α/β)2 < 1 + 2α(α − 1)/β2 (38)

that otherwise are infinite. Assuming that the data are in the
allowed parameter region, moment estimators of the parameters
are then obtained from (36) and (37) as

α̂ =
Z1 − y0

Z1 − 1
(39)
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Fig. 7. Indication of misfit of the OU model when the first-passage data are
uniformly distributed (top), truncated normally distributed (density ∝ ϕ(s), s >

0) (middle), and Rayleigh distributed (density ∝ sϕ(s/σ), s > 0, σ 2
= 0.5.1, 2

from left to right). The test uses the integral equation (25).

are not plausible as underlying processes. This is illustrated in
the diagrams of Fig. 7.

8. Conclusions

The investigation herein is about the estimation of the
parameters of a random process defined by a given stochastic
differential equation when the process is hidden except for
observation of times to first passages from below of a given

Fig. 8. This figure continues in the next figure, see the caption in Fig. 9.

threshold. In particular the investigation focuses on a non-
stationary Ornstein–Uhlenbeck process and a non-stationary
Feller process for which the Fortet integral equations for the
first-passage time probability density are explicitly known. It is
shown by simulations that the two parameters of the processes
can be quite accurately estimated by applying the integral
equations to suitably large samples of first-passage times, and
empirically that the bivariate normal distribution is applicable
for the correlated pair of estimates. Some other available
estimation procedures are applied to the simulated samples
with the conclusion that the integral equation method generally
gives at least as good or more accurate estimates. Moreover the
integral equation method is more generally applicable than the
other available estimation methods.
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Fig. 7. Indication of misfit of the OU model when the first-passage data are
uniformly distributed (top), truncated normally distributed (density ∝ ϕ(s), s >

0) (middle), and Rayleigh distributed (density ∝ sϕ(s/σ), s > 0, σ 2
= 0.5.1, 2

from left to right). The test uses the integral equation (25).
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the diagrams of Fig. 7.
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The investigation herein is about the estimation of the
parameters of a random process defined by a given stochastic
differential equation when the process is hidden except for
observation of times to first passages from below of a given

Fig. 8. This figure continues in the next figure, see the caption in Fig. 9.

threshold. In particular the investigation focuses on a non-
stationary Ornstein–Uhlenbeck process and a non-stationary
Feller process for which the Fortet integral equations for the
first-passage time probability density are explicitly known. It is
shown by simulations that the two parameters of the processes
can be quite accurately estimated by applying the integral
equations to suitably large samples of first-passage times, and
empirically that the bivariate normal distribution is applicable
for the correlated pair of estimates. Some other available
estimation procedures are applied to the simulated samples
with the conclusion that the integral equation method generally
gives at least as good or more accurate estimates. Moreover the
integral equation method is more generally applicable than the
other available estimation methods.
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Figure 4: Estimates of σ plotted against estimates of µ in suprathreshold regime for the
method of moments (A, D and G), method of Laplace transform (B, E and H), and method
of integral equation (C, F and I). True values in simulated data sets are µ = 5 V/s (all
panels), σ = 1 mV/

√
ms (A, B and C), σ = 5 mV/

√
ms (D, E and F), and σ = 10

mV/
√
ms (G, H and I). In all cases τ = 5 ms and S = 15 mV. Note that the Laplace

transform method for σ = 10 is not valid, and can only estimate to the right of the gray
dashed lines (B, E and H).
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56

statistics of 100 estimates:

regime β = 1 average ± SSD

α = α̂ α̃

subthreshold 0.8 0.79 ± 0.09

threshold 1 1.10 ± 0.06 1.00 ± 0.08

suprathreshold 2 1.99 ± 0.10 1.98 ± 0.11

suprathreshold 3 2.97 ± 0.09 2.95 ± 0.10

suprathreshold 4 3.94 ± 0.12 3.90 ± 0.11

≈ Wiener 11 10.96 ± 0.11 9.88 ± 0.15
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statistics of 100 estimates:

regime β = 1 average ± SSD

α = β̂ β̃

subthreshold 0.8 0.94 ± 0.10

threshold 1 0.93 ± 0.10

suprathreshold 2 0.64 ± 0.10 0.95 ± 0.08

suprathreshold 3 0.48 ± 0.05 0.96 ± 0.10

suprathreshold 4 0.39 ± 0.04 0.92 ± 0.09

≈ Wiener 11 0.22 ± 0.02 1.46 ± 0.16
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