On the moments of somefirst passage
times for exponential families of processes

Michael Sgrensen
Department of Theoretical Statistics
Institute of Mathematics
University of Aarhus
DK-8000 Aarhus C, Denmark



Summary:

For curvedexponentialfamilies of stochastigorocesses naturaland often studied
sequentiaproceduras to stopobservatiorwhena linear combinationof the coordinates
of the canonicalprocesscrossesa prescribedevel. Conditionsare given which ensure
that suchfirst passageaimes or a function of them havefinite moments. Also results
about L,—convegenceasthe prescribedevel tendsto infinity are given.
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1 Introduction

For curvedexponentialfamilies of stochastiqprocesses naturalsequentiaproce-
dureis to stopobservatiorwhena linearcombinationof the coordinate®f the canonical
processcrossesa prescribedevel. This type of sequentiaprocedurehasbeenstudied
by severalauthors,seee.g. thelist of referencesn Sgrenserf1986). For a generaldef-
inition of andbasicresultson exponentiafamilies of stochastiqprocessesseeKichler
and Sgrensern(1989, 1994).

Sequentiaprocedure®f the type describedabovehavelikelihood functionswhich,
exactly or approximately,are of the non-curvedexponentialtype. This implies, asis
well-known, severalnice statisticalproperties.An interpretationof thesestoppingrules
is that observationis continueduntil a prescribedamountof observednformationhas
beenobtainedabouta certainone-dimensionaparameterfunction. Generalresultson
this type of sequentialprocedurewere given by Sgrenser(1986, 1994) and Stefanov
(19864a,b,1993).

If exponentialfamilies obtainedby sequentialsamplingare non-curved,the max-
imum likelihood estimatorfor the meanvalue parametetis efficient in the sensethat
thereis equalityin the Craner-Raoinequality. This hasin muchof theliteraturebeena
mainmotivationfor studyingstoppingrulesof the type describecabove. Sinceefficient
estimatorsdo not exist for curvedexponentiaffamilies (seeTheorem15.4in Chensov,
1982, p. 219), suchstoppingrules are the only possibilitiesto obtain a so-calledef-
ficient sequentialplan.

Conditionsensuringthat a linear combinationof the coordinatesof the canonical
processcrossesa given level at a finite time are well-known, see Stefanov(1986b).
Hopfner (1987) showedthat these stopping times have finite momentsfor ergodic
Markov processesvith countablestate-space.He also gave conditionsensuringthat
the stoppingtimes divided by the level convegesin L, to a finite limit asthe level
tendsto infinity. The presentpaperuseslarge deviationresultsfor semi-martingaleso
give conditionsensuringthe existenceof momentsand L, —convepgencefor a rather
generalclassof ergodic exponentialfamilies of processes.

In Section2 the type of model and the stoppingtimes consideredin this paper
are defined,and somepreliminaryresultsare given. The main resultsare presentedn
Section3, while exponentiafamilies of diffusion-typeprocesseandMarkov processes
with finite state-spaceare discussedn Section4.

2 Preliminaries

Considerameasurablspace(2, F) with a classof probabilitymeasure® = {Py €
0}, © C R* satisfyingint® # @, andwith a stochasticprocessX. Let {F} denote
the right-continuoudfiltration generatedy observationof X in the time-interval 0, ¢],
andlet Pg denotethe restrictionof Py to F;. We assumehatthereexistsa probability
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measureP on (€2, ) suchthatfor all ¢ > 0 andall § € © we have P} << P’ and

t

Li(0) = % = exp (HTAt - ¢<9)Tst). (2.1)
Here L;(#) is the likelihood function correspondingo observationof X in [0,¢]. We
denotetranspositionof matricesby a 7. In (2.1) the stochasticprocessS and the
non-randonfunction ¢ are (m — k)—dimensionalwhile A is a k—dimensionalvector
processwhich is right-continuouswith limits from the left. We assumemoreover that
every coordinateof S; is a non-decreasingredictableprocesssatisfyingthat Sy = 0
and S; — oo ast — oo.

This type of exponentialfamilies of stochasticprocessegsoversseveralimportant
classesof stochasticprocessmodelsincluding exponentialfamilies of diffusions, ex-
ponentialfamilies of countingprocessesand Markov processesvith finite state-space.
Furtherexamplescanbe found in Sgrenser{1986)and Kiichlerand Sgrenser{1994).

We shall study stoppingtimes of the type
Tula, B) = inf {t >0:al A+ 67, > u} 2.2)

wherea € RF, g € R™* andu > 0. Sometimeswhen thereis no ambiguity, we
will just write 7.

We shall work underthe following condition.
Condition A(6).
(i) The scorevector
Ui(60) = A — (0)" 1, (2.3)

where ¢(0) = {0¢i(0)/06;}, is asquarentegrablePy—martingaleandthe (i, j)’'th
elementof its quadraticcharacteristids

<uey> @) -2

T
) —aeiaejgo(e) St. (2.4)

(i) Every coordinateof ¢(f)a + (3 is positive.

(iii) Thereexistsa strictly increasingfunction f and a constantvector ¢(¢) # 0 such
that f(0) = 0 and S;/f(t) — ¢(f) in Py—probability ast — oc.

O

A conditionimplying condition A(#) (i) is that0 € intM(#,¢) for all ¢ > 0 and
0 € int®, where M(0,t) denoteghe domainof the Laplacetransformof S; under P,
seeCorollary 6.3 in Kiichler and Sgrensen(1992).

We further assumethat we can find an exponentialrepresentationywhere A; =
(A, ADT with A¢ k;—dimensional,and where the correspondingdecompositionof
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the scorevector Uy (9) = (UF(9), U4()) hasthe propertythat Uf(6) is a continuous
martingalewheread/{(#) is a purely discontinuousnartingale. This assumptioressen-
tially meanghatthe diffusionandthe jump mechanisnof the processareparameterized
separately.lt implies that the quadraticcharacteristiof the martingale

M; = ol U, (0) (2.5)
has the form

<M >= 7 ()’ S+ 74a) S, (2.6)

wherethe vectors7¢(d) and 7%(a) are given by

k
c - 82
T (Oé) = — i]zz:l alQ]m@(G), (27)
d . 32
t,J=k1+1

In (2.6),7%(a)”'S; is the quadraticcharacteristiof the continuousmartingalepartof M,
while 7%¢(a)T S; is the quadraticcharacteristiof the purely discontinuouspart of M.

Under Condition A(#) the following resultsaboutr,(a, #) hold.

Lemma 2.1

(a” 4+ 575,/ £(8) = (£(0)a + ) e(0) (2.9)

in Py—probability, and

Py(ty(a, f) < o0) = 1. (2.10)

Proof:

Since
al Ay + 7S, = My + (p(0)a + B)T Sy,

it follows by the law of large numbersfor martingalegLiptser, 1980) that
(aTAt + ﬁTSt> [f(t) = (¢(0)a+ B) c(8) > 0

in Pyp—probability. This provesthe lemma. O

This resultgeneralizes resultby Stefanov(1986b). In the nextlemmada,. denotes
the positive part of a.



Lemma 2.2. Suppose

[ (4= 4] /50— 0 (2.11)
in Py—probability ast — oo.
Then 1
u flrules B)) = [(2(0)a + 8) ()] (2.12)

in Py—probability asu — oc.

Proof: The result follows by noting that
f(Tu) _ f(Tu)
u ol A, +BTS,, — D;,’
where D,, = u — o’ A,, — 37S,,, and that (2.11) implies D,,/S,, — 0 in
Py—probability. Now LemmaZ2.1 canbe appliedsincer, T co asu — oo. U
We shall imposethe following condition on the martingale M.

Condition M(6).
The martingale M = o”U(#) is quasi-left-continuousaind its jump characteristic
v under Py hasthe form

m—k
vw,dt,de) = 3 Ki(d)dS?, (2.13)
i=1
where K; is a non-randommeasuresatisfying that
/xQKi(d:c) <oo, i=1,...,m—k. (2.14)
U]

Under ConditionM(6) the quadraticcharacteristiof the purely discontinousmar-
tingale part of M is

t
/ / 22v(ds, dz) = v()T S, (2.15)
0 R\{0}
where
vi(a) = / 22 K;(dx),
R\{0}
which is in accordancewith (2.6). A condition implying (2.13) is v(w,dt,dz) =
K(dx)m(w,dt), where K satisfies(2.14). Note that (2.14) implies that
t

/ / |z|v(ds,dx) < 00, ¢ >0.

0 |z|>1



3 Results

In this sectionwe give resultsaboutmomentsof f(r,) and L,—convegenceof

uw (7).

Theorem 3.1. SupposeCondition A(#) and Condition M(#) are satisfied. Assume
further the Cramér condition that thereexists Ao > 0 suchthat

/ e’\xKi(da:) <oo, i=1,...,m—k for X € (0, ]

|z|>1

Thenfor g(t) = f~(xt), wherer > [(¢(0)a + 3)Tc] 7,

1/q
. -1/, _ T
Py(1y > g(u)) < \ 1En§\a exp [q (q 1)/\u} {Eg (exp [(q L)a(A) Sg(u)D} ,
qg>1
(3.1)
where 1
a(\) = 5)\27rc(04) + h(A) = M@)o + B) (3.2)
with
hi(/\) = / (e)‘x —1- /\SU) K,(dx)
R\{0}
and with 7¢(«) given by (2.7). The set
Ay ={X € (0,A] : a(N) < 0} (3.3)
is non-empty.By a(\) < 0 we meanthat every coordinateof a(\) is negative. O

Remark: It is obviousfrom the proof that (3.1) holds for any positive and strictly
increasingfunction ¢ satisfying that f(¢) — [(¢(0)a + 8)Tc|~1g~1(t) is a positive
increasingfunction. O

Proof:
Py(ry > g(u)) < Pg(Kg(u) < u),

where )
Ki=aol A+ 7Sy = My — By + f()(@(0)a + 5)TC

with )
By = (p(0)a+ B)" (cf(t) = Sy).

We will thereforeapply the large deviationresultLiptser and Shiryaev(1989, Theorem
4.13.3)to the probability

P(K; < 3(t) = P(X; > (¢(0)a+ 8)" ef () - 5(1))



where X = B — M. In orderto do this, we needthe local characteristicoof the
semimartingaleX under Py. The jump characteristicand the continuousmartingale
characteristicof X equalthoseof M, i.e. v and 7¢(a)’'S;, respectively. The drift
characteristiof X is B minusthe compensatiorof the jumps numericallylarger than
one, so our B equalsthe processdenotedin the sameway in Liptser and Shiryaev’s
theorem. Now for A € (0, \¢] define

t
Gi(\) = A\B; + %/\2 ¢ St + / / AT 1 — )\x)l/(ds, dx).
0 R\{0}
Under Condition M(6)

/

/ o g /\x)u(ds, dz) = h(a)TS;.
\{0}

R\

Thus
Gi(\) = M@(0)a +ﬂ) cf(t) +a(A ) St.

Let us next showthat the set A, is non-empty. First note that
hi(A) = / x(e/\w - 1)Ki(d93)
R\{0}

when A € (0,\). Henceh(0+) = 0 anda’(04+) = —(¢(f)a + ). Now, since
a(0) = 0 andevery coordinateof a’(0+) is negative,we canfind A € (0, \y) suchthat
every coordinateof a()) is negative.

We havenow checkedthe conditionsin Liptser and Shiryaev’stheorem,andtheir
formula (4.13.26)yields that for every positive and non-decreasinfunction ¢;

P(X¢ > 6¢1) < { Bg(exp [~(q — 1) (X6 — ¢t_1Gt(/\))])}1/q

for every A € Ay, ¢ > 1 andé > 0. By choosings = (¢(8)a+8) ¢ and
¢ = f(t) — 671§(t) we obtain

Py(X; > 6¢r) < exp [¢7(q — 1)AG(1)] {Eg (exp [<q _ 1)a(A>Tst} ) }1/ ‘!

providedg is a function suchthat f — 61§ is positive and non-decreasing.
Fort = g(u) andg(t) = g~'(t) = » 1f( ), we getthat; = f(t)(1 - (6x)~") > 0
and

Py(K () < u) < exp [q_l(q — 1)Au] {Eg (exp {(q - 1)a(/\)TSg(u)} ) }l/q,

which provesthe theorem. O



With the notation

010 = {Ea(exp [(a - D" s1]) }

we have the following result.

1/q

Theorem 3.2. SupposeCondition A(#) and Condition M(¢) are satisfiedand that
thereexistg > 1 and A € A, suchthat

/1@\7(1 (f_l(x))xp_ldx < 00
0

for somep > 0. Thenthe p’'th momentof f(7,) underP; is finite. O

Proof: The result follows because

Eg((u_lf(Tu))p> = /Pg <Tu > f_l (uxl/p)>dx
0
and becausehe integrandfor = sufficiently large is dominatedby

exp [q—1<q _ I)Au} w}\’q (f_l (uxl/P)) )

which hasbeenassumedntegrable. O

Theorem 3.3. SupposeCondition A(#) and Condition M(¢) are satisfiedand that
thereexistg > 1 and A € A, suchthat

g (F7H@) = O(e7a?) as & — o0,

whereb > 0 andp > 0. Thenthefamily of randomvariables{(u=!f(7,))? : u > € > 0}
is uniformly integrableunder P, for everyp > 0 ande > 0. Underthe conditionsof
Lemma?2.2

) =[G+ 8)e0)]

in L, (p > 0) asu — oo underpFy. O

Proof: With u = ¢'(¢ — 1)\ and with the constantk; suitably chosenwe have
for ¢ sufiiciently large that



Ly [(u_lf(Tu))pl{(u—lf(Tu))P>c}}

oo

— P [Tu > f_l(ucl/p” n / Py [Tu > f—l(uyl/f’)}dy
<) o o
< cerapn g (£ (wc’)) + e“u;—pp 7 G(f7M(z)
ucl/p
< klupcp/pﬂe—u(bcl/”—u) + kpefiy P 7 oY o tp=1 g,
ucl/p

for ¢ > ((pe=!+p)/b)P. This expressiorgoesto zeroasc — oo, which provesthe first
claim. Theresulton L,—convegencefollows in view of LemmaZ2.2. O

4 Examples

4.1 Diffusion processes

Considerthe classof stochasticdifferential equations
dXt = [CLt(X) + th(X)]dt + Ct(X)th, t> 0, (41)

0 € © C R, with initial condition Xy = xq. All quantitiesare one-dimensional; > 0,
andthe functionalsa,, b; and¢; dependon X only through{X; : s < ¢t}. As usualW
is a standardVienerprocess.We assumehata, b andc satisfyconditionsensuringthat
(4.1) hasa uniqueweak solutionfor all # € ©. Examplesof modelsof this kind are
the Brownianmotionwith drift, the Ornstein-Uhlenbeckrocesseghe Besselprocesses
and the non-Markovprocessestudiedby Kiichlerand Mensch(1992).

If X is observedn thetime-interval|0, ¢], the likelihood functionis, undersuitable
regularity conditions(seee.g. Liptser and Shiryaev,1977), given by

1
Li(0) = exp <0At - 5925t>,



where
and

with
t
Xt = Xt — T — /CL3<X)CZS.
0

This modelis of the type consideredn this paper.

Sincea solutionof (4.1) doesnot jump, condition M/ (#) andthe Crarrér condition
are automaticallysatisfied. Thuswe needonly assumeCondition A(f) to obtainthat

Py(ru > g(u)) < \ ienia exp [¢7 (¢ — 1)Au]r 4 (9(w). (4.2)

qg>1

For diffusion-typeprocesses(A) hasthe simple form
Lo 9
a(N) = 5)\ a” — MNab + ),

and
Aq = (0, 207 %(ab + 3)).

For the particularcaseof the Ornstein-Uhlenbeclprocess
dXy = 0Xpdt + dWy, Xy = xo,

condition A(6) is satisfiedwith f(¢) = ¢ andc(f) = —(26)~! whend < 0. Fromresults
in Kdchlerand Sgrenser(1992) it follows that

Urg(t) = O<exp [—;—q{\/m —9(q — Da()) + 0}])

for all ¢ < 1 and X € A,, so the conditionsof Theorem3.3 are satisfied. Hence
{(u™'7,)P : u > ¢ > 0} is uniformly integrablefor everyp > 0 ande > 0, and

w i, — —20(ab + ﬁ)_l
in L,(Fy) asu — oo for everyp > 0.
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4.2 Finite state-space Markov processes

A continuoustime Markov processwith finite state-spacdl,...,m} andintensity
matrix {)\;;}, where \;; > 0 for ¢ # j, has,when observedin [0,¢], the likelihood
function

Li(0) = exp {i [Z 0, K — (Z i 41— m> Sfi)] } (4.3)

i=1 | j#i j#i

providedthe initial state X, = xq is fixed. Here§;; = log A;;, the processKt(i’j) is

the numberof transitionsfrom state: to state; in the time interval [0, ¢|, and St(i) is

the time the processhasspentin state: beforet. The assumptiorthat A;; > 0 for all
¢ # j is only madeto simplify the exposition.

We considerstoppingtimes of the form

Tu = inf {t >0: Z (ﬂ,-st(i) + Zozint(i’j)) > u} (4.4)
1=1

J#
Thescorevectoris a squardantegrablePy; —martingalewith quadratiocharactcirlistittz.4)
and A(9), (iii) is satigied with f(t) =t and¢;(0) = Ai.(0) " [ A.(6)7'| , where
Ai(0) = ; exp (6;;). The jump characteristioof A/ hastheforr% (2.12) with
i
Ki(de) = ajje®ib (dw),
J#
where 65, is the Dirac-measureat j. The Cramer condition is obviously satisfied.

Henceby Theorem3.1

Py(ry, >u) < inf e g — D U).
5 (7 )_/\EAU xp [0 (g — DAu] o g (u)

g>1

For finite state-spacé/arkov processes

ai()\) = Zozijeeij (ej’\ —1- (j + 1)/\) — AG;.
J#i
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