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Abstract

We consider ergodic diffusion processes for which the class of in-

variant measures is an exponential family, and study inference based
on the class of invariant probability measures when the diffusion has
been observed at discrete time points. When the drift depends lin-
early on the parameters, the invariant measures form an exponential
family. It is investigated how the usual exponential family inference,
which can be done by means of standard statistical computer packages,
works when the observations are from a diffusion process. In particu-
lar, the limit distributions of estimators and test statistics are derived.
As an example, we consider classes of diffusions with generalized in-
verse Gaussian marginals. A particular instance is the well-known
Cox-Ingersoll-Ross model from mathematical finance.
Key Words: Asymptotic Normality; Consistency; Cox-Ingersoll-
Ross model; Discrete time observation; Inference for Diffusion Pro-
cesses; Estimating Functions; Exponential families; Generalized in-
verse Gaussian diffusions.

1 Introduction

Diffusion processes often provide a useful alternative to the discrete time
stochastic processes traditionally used in time series analysis as models for
observations at discrete time points of a phenomenon that develops dynami-
cally in time. In many fields of application it is natural to model the dynamics
in continuous time, whereas dynamic modelling in discrete time contains an
element of arbitrariness. This is particularly so when the time between ob-
servations is not equidistant. An example is financial data, where the models
used to price derivative assets such as options are based on continuous time
models, usually diffusion models, which must be fitted to time series of stock
prices, interest rates or currency exchange rates.



Statistical inference for diffusion processes based on discrete time observa-
tions can only rarely be based on the likelihood function as this is usually not
explicitly available. The likelihood function is a product of transition densi-
ties, as follows easily from the fact that diffusions are Markov processes, but
explicit expressions for the transition densities are only known in some spe-
cial cases. Alternatives are simulated likelihood inference (Pedersen 1995a,
1995b) or martingale estimating functions (Bibby and Sgrensen, 1995, 1996,
Kessler, 1995, Kessler and Sgrensen, 1995, Sgrensen, 1996). Both approaches
are, however, rather computer-intensive, and it is desirable to have a simple
alternative that can, at least, be used for a first analysis of data.

Kessler (1996) studied a type of estimating functions for diffusion models
which include the pseudo score function obtained by pretending that the data
are independent observations from a distribution that belongs to the class of
invariant measures. Here we study in detail the particular case, where the
class of invariant measures is an exponential family. This is a particularly
interesting case because the inference is simple and the analysis of data can
be done using standard statistical computer packages containing procedures
for analysing generalized linear models. When the drift depends linearly
on the parameters, the invariant measures form an exponential family. The
estimator obtained in this paper is obviously not efficient. Questions of
relative efficiency within the class of estimating functions that are a sum of
functions dependent on the parameters and only one of the observations were
studied by Kessler (1996).

It should be noted that the diffusion models considered in this paper are
not exponential families of stochastic processes in the sense of Kichler and
Sgrensen (1997). They do also not belong to the type of models studied by
Ycard (1992), who excludes the case of stationary processes.

In section 2, diffusion models where the invariant measures form an ex-
ponential family are studied and some classical exponential family results
are reviewed. In Section 3, we find the exponential family estimator, én,
and prove that it is consistent and asymptotically normal. The asymptotic
variance is different from that in the case of independent observations, so we
study an estimator for the asymptotic variance of 0,. Finally, results about
the limit distribution of the pseudo likelihood ratio test statistic are given. In
the final Section 4, a flexible class of diffusions with invariant measures in the
exponential family of generalized inverse Gaussian distributions is introduced
and investigated.



2 Diffusion models where the invariant mea-
sures form an exponential family

Consider a one-dimensional system that we would like to model by means of
the ordinary differential equation

— = Z/szz(”ﬂt), (21)
dt =1
where by, ..., b, are known continuous functions, and 3, ..., 3, are unknown

parameters about which we would like to draw inference.

Suppose we have observed the system at the time points 0 < ¢; < -+ < t,,,
so that we have the data Xy, ..., X;,. If the data do not follow (2.1) exactly,
we might want to try to use the diffusion model given by the class of stochastic
differential equations

P

dX; = Biby(X,)dt + Mv(Xy)dWy, (2.2)
=1

where W is a standard Wiener process, v > 0 is a known function and A > 0

is an real parameter. We consider only functions by,...,b, and v > 0 that

satisfy the usual conditions ensuring the existence of a unique weak solution.

An idea about how to choose v could be obtained by studying suitable plots

of the data. The parameter A is an index of the level of noise in the system.

Denote the interior of the state space of a solution X of (2.2) by (I,r), where

—oo < | < r < oo. The state space is assumed to be the same for all

parameter values.

With the reparametrization #; = 3;/A\*, i = 1,...,p, and the definition

Ti(z) = /: izi(f;dy, i=1,....p (2.3)

for some fixed zq € (I,r), we have the following representation of the scale

meastire So0) = e (_é HZ-TZ-(;B)) (2.4)

and of the speed measure

m(z;0) = v(z) 2exp (zpj HiTi(:n)) . (2.5)

=1

We use the notation 6 = (6;,...,6,)T. Transposition of a vector or matrix a
is denoted by a”. Consider the parameter sets

0= {9 e [ (e 0)ds < oo} (2.6)
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and

0, = {(9 € R”: /lxo s(x;0)de = /ﬂ: s(x;0)de = oo} . (2.7)

0

For § € O, let ug denote the probability measure on (I, r) with density

h(z;0) = exp (Zp: 0;T;(x) — 2logv(z) — ¢(9)) , (2.8)

i=1

where

() = log /l m(; 0)dz. (2.9)

Then the class of probability measures {ug : § € O} is an exponential family.
If § € O, the diffusion process X is ergodic with invariant measure pg. It
is quite possible that ©; is a proper subset of ©. For instance for the Cox-
Ingersoll-Ross model, which is obtained for p = 2, by(x) = 1, by(x) = z, and
v(z) = /z, we find that ® = (0,00) x (—00,0) and O = [1,00) x (—00,0).
In this case, the invariant measures are gamma distributions. It is easy to
see that we have the following result.

Lemma 2.1 Suppose that (I,r) = IR and that v is bounded. Then © = ©.

We assume that the functions b;/v?,...,b,/v? are linearly independent.
This implies that also the functions 73, ..., 7, are linearly independent, and
that, hence, the exponential representation (2.8) is minimal and the param-
eter 6 is identifiable.

The following are standard results for exponential families; see Barndorff-
Nielsen (1978) or Brown (1986). For 6 € int ©, the mapping ¢(9) is infinitely
often differentiable, and T'(X;) has moments of any order if X; ~ pg. In
particular,

B, (T(X) = 86(0), (2.10)

Vi (T(Xy)) = 956(0). (2.11)

We use the notation dy¢p(6) for the vector of partial derivatives of ¢ with
respect to the coordinates of #, and J3¢(6) for the p x p matrix of second
order partial derivatives.

Condition 2.2 The cumulant transform ¢ is steep.

Let 7 denote the closure of the convex hull of the image of ({,r) by T'. The
following result is also classical; Barndorff-Nielsen (1978) or Brown (1986).

Lemma 2.3 Under Condition 2.2 the mapping
Og¢ : int @ — int 7T

is @ homeomorphism.



In the next section, we shall consider inference based on the exponential
family of invariant measures. By this procedure we can, obviously, only draw
inference about the parameter = (6,...,60,)T. If A is known, this is not
a problem. When X is not known, we can always estimate it by means of
a quadratic martingale estimating function, see Bibby and Sgrensen (1996).
Properties of estimators of multi-dimensional parameters, where some com-
ponents of the parameter are estimated using the class of marginal distribu-
tions, while the other components are estimated by means of a martingale
estimating function, are studied in Bibby and Sgrensen (1997). Even without
estimating A, we can draw inference about the ratio between the value of the
f’s in (2.1) based on the invariant measures.

If one of the A’s is known, we can also estimate A using only the invariant
measures. If, specifically, the dynamic system under study is ideally modelled
by the deterministic equation

d.ft L ¢ ¢
o= bi(xe) + Y Bibi(wy), (2.12)
1=2
where by,...b, are known continuous functions and f3,,..., 3, are unknown

parameters. Then we might try the stochastic model defined by
P
dX, = |bi(Xy) + D Bibi(Xy)| dt + Mo(X,)dW,, (2.13)
=2

where W is a standard Wiener process, and v > 0 is a known function, while
A > 0 is unknown. After the reparametrization 6; = 1/\* and 0; = 3;/)\?,
¢ =2,...,p, the scale and speed measures are given by (2.4) and (2.5). As
above, X is ergodic if § € O, and the invariant measure has the density
(2.8).

Diffusion models with exponential families of invariant measures can be
obtained in other ways than the one described above. For instance, the class
of stochastic differential equations

P

dXt = )\eXp (—% ZGZTZ(Xt)) th,

=1
where T4, ..., T, are known functions, has speed measures given by
P
m(xz;0) = exp (Z GZ-TZ-(;C)) .
i=1

In this case the scale measure is s(z;0) = 1, so ©; = O and X is ergodic
when 6 € ©. The invariant measure is given by (2.8) with v = 1. Models of
this type, with a few non-exponential parameters added, were used in Bibby
and Sgrensen (1997) to model stock prices.
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3 Exponential family inference for diffusion
models

In this section we consider inference about the parameters in the invari-
ant measure. We base the inference on the exponential pseudo likelihood
function obtained by pretending that the data Xi,,..., X}, are independent
observations with a common distribution belonging to the class of invariant
measures {pg : 0 € ©1}. The corresponding pseudo score function is

Ga(0) = Y [T(Xy,) = m(0)], (3.1)

j=1

where
m(0) = 0p6(0). (3.2)
This is an estimating function of the type studied in Kessler (1996).

Lemma 2.3 implies that under Condition 2.2 the estimating equation
(Gn(0) = 0 has the unique solution

A

1 n
&ﬁ:nf1<g§:TL&J)éEmt®, (3.3)
J=1

provided that £ ", T(X,,) € int 7.

We will now study the properties of this estimator when the number of
observations tends to infinity. We simplifty matters by assuming that the
observations are made at equidistant time points, i.e. {; = JA, 7 =1,...,n,
for some A > 0.

Proposition 3.1 Suppose § € ©; Nint O, and that Condition 2.2 holds.
Then the estimator 0, exvists with a probability tending to one as n — o0,
and

0, — 0

in probability as n — oo when 0 is the true parameter value.

Proof: Since X is ergodic (6 € 04), it follows by the ergodic theorem that

L Zn:T(XjA) — E,,(T(X)) €intT

J=1

in probability as n — oo, and using (2.10), the proposition follows because
0 € int ©.
O
Define

F(2;0) = T(z) — 9y6(0). (3.4)



Then by (2.10) and (2.11) we have f;(0) € L3(us) when 6 € int ©. Here f;
denotes the ith coordinate of f, and L(uy) is the set of real functions on
(I,7) that are square integrable with expectation zero under py.

The estimating function G, (), given by (3.1), is not a martingale when
f is the true parameter value, so we cannot directly use the central limit
theorem for martingales to obtain results about asymptotic normality of
Gn(0) and 0,. Therefore, we need further assumptions. Let a(x;0) denote
the drift of the diffusion, and define

u(x;0) = a(x;0)* A v(2) 7% 4 d/(z;0)]
—v'(2)a(z;0)/v(z) + 1A% (2)? — I\ 0(2)v"(2).
A prime denotes differentiation with respect to z.

Condition 3.2
min{ lin} u(z;0), limu(z;0) } >0
for all § € ©,.

Under Condition 3.2, there exists, for every € ©, a constant Ay > 0 such
that for g € L3(up)
M 0glle < e™**lg]lo (3.5)

for all A > 0. Here || - ||4 is the norm in L*(uq), i.e. ||g||2 = [ g*dpe, and TIA g
denotes the operator defined by

Mapg(z) = Eg(g(Xa)|Xo = ) /g p(A, z,y;0)dy,

where p(A, z,y;0) is the transition density for X, i.e. the conditional density
of XA given Xy = x when 6 is the true parameter value. The contraction
property (3.5) of I g implies that the operator

Upg(x ZEa Xia)|Xo = z) ZHiA,eg(iﬂ)

is well-defined for ¢ € L3(pg). The sum converges in L3(ug).

Theorem 3.3 Suppose that 0 € 01 Nint O and that Condition 3.2 holds.

Then |
\/—ﬁ n Zf zA; —> N(O,Ag) (36)

when 0 is the true parameter value. Here
Ag = /h(fﬂ,y;H)h(w,y;H)TQi(diﬂ,dy) (3.7)
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with
h(z,y;0) = Ugf(y; 0) — Ua f(x;0) + f(x;0) (3.8)

and

Q4 (dz,dy) = p(A, z,y; 0)dyps(dz). (3.9)

This is an application of the multivariate version of the central limit theorem
in Florens-Zmirou (1989), which follows easily by the Cramér-Wold device;
see also Kessler (1996). It follows from the central limit theorem for martin-
gales because G, (0) = 321 M(X(j—1ya, Xja0) — U f(Xna3 0) + Ug f(Xo; 0).
Here the sum is a martingale when 6 is the true parameter value, since
Oae(Ugf) = Upf — f. According to Florens-Zmirou (1989), the following

condition also implies that Theorem 3.3 holds.

Condition 3.4 For every § € Oy there exist constants cg and My such that
[a(z;0)/v(z) — 1A% (2)]sign(z) < —cs
for all x satisfying |x| > M.

This follows from Florens-Zmirou’s condition by applying the standard trans-
formation ¢(z) = [; v(y)~'dy to X to obtain a diffusion of the type considered
by her. It is easy to see that

(A)i = [ Uafily: 0)Usfi(y; 0)noly)dy (3.10)
— [Wafila;0) = (s 0)|[Uaf;(w30) = f(a3 0)]o()da
= [ X B 0o = a1t O)po(r)
b [ 3 ElF (X 0)1X0 = 2113 (o)
+ [ i3 0)f (e O)mo(w)da
- ]i{Eue[fi(Xo;a)fj(Xm;@)]

+ By [f5(Xo3 0)f:( X 001} + [ fila; 0)f5(a3 0)pso()de
= H(0);; + 056(0);;

where

H(0) =23 ex(0) (3.11)



with

cr(0) = {Covy,(fi(Xo;0), fi(Xka;0))}ij=1,..0 (3.12)

= {5 0):0)Q s )

1,7=1,...,p

We have used that X is time reversible for 6 € ©1; see Kent (1978). Without
any further conditions we have the following result about the distribution of
our estimator.

Theorem 3.5 Suppose that § € ©;Nint © and that Condition 2.2 and Con-
dition 3.2 hold. Then

Vb, —6) B N0, V()" AV ()71, (3.13)
where
V(6) = 3R6(6), (3.14)
when 0 is the true parameter value. Moreover,
V(O) TAV ()t =V(0)T + V()T TH(0)V(0)! (3.15)
and
(V0T H(O)V(0)™)yj = O(e™2) (3.16)
as A — oc.

Note that V(6) is the covariance matrix of T'(X;) when X; ~ pg; cf. (2.11).

Proof: To prove (3.13) consider the standard expansion
0=Gn(b,) = Gn(0) —nV (WD, ... 00, —0),

where each of 677(1"), t = 1,...,p is a convex combination of 0, and A, and
where V(0y,...,0,) is the matrix the ith row of which equals the ith row
of V evaluated at the argument 6;. Since V() is continuous and invertible,
the result follows by applying Proposition 3.1 and Theorem 3.3. Formula
(3.15) follows immediately from (3.10). Finally, (3.16) follows by the Cauchy-
Schwarz inequality:

ek (0)ii| = |Eu[fi(Xo0;0) f5(Xeas; 0)]] (3.17)
< £ s 1Tkas 5Ol < e 24N £i(0)lo 11£5(0)le,
where we have used (3.5). Thus, |[H(6);] < 2e7*2/V(0):V(0);;/(1 —

e_)‘eA).
O



In order to use Theorem 3.5 in practice, we need an estimate of the
covariance matrix Ag. This is not straightforward because the observations
are not independent. In the econometric literature there are estimators for Ay
that are robust towards correlation between the observations, see e.g. Gallant
(1987). However, we prefer to exploit the expression Ay = H(6) + V(0); cf.

(3.10). Let égcn)(ﬂ) denote the obvious estimator for the matrix of covariances

Ck(a)I
n—k
& (0);; = n% > il Xias0) fi(X(i4mya; 0), (3.18)
=1

where n > k. Then an estimator of H(#) is given by

v(n)

Ha(0) =2 &7(0), (3.19)

k=1
where v(n) < n and v(n) — oo as n — oc.

Proposition 3.6 Suppose that the conditions of Theorem 3.5 are satisfied
and that v(n) = o(y/n). Then

H,(0) — H(0) and H,(6,) — H(0) (3.20)
in probability as n — oo provided that 0 is the true parameter value. If v(n) =
n® with 0 < o < 3, then |H,(0,);; — H(0);;] = 0,(n*"3). If v(n)/log(n) =
O(1), then |]:]n(én)” — H(0);;] = op(n_%"'ﬁ) for every e € (0,3). The same is
truc of |T,(0);; — H(0):.

Proof: Since

v(n) e

&0 — @5l +2 S Jen(0)4],
k=1 k‘:y(n)-|-1

where the last sum on the right-hand side is dominated by a constant (de-
pendent on #) times e **A¥(") cf. (3.17), the proposition follows if we can
prove that each of the terms in the first sum on the right-hand side is of order
Op(n_li). By straightforward calculations

Vi le(0,); — ()] =




i m(,)m(B,); - m(0)m(0);),

where 7(0);; = [Ti(2)Tj(y) Qs (dz,dy). That the three last terms on the
right-hand side converge in distribution follows from Theorem 3.5 by the 6-
method, because m is continuously differentiable. To see that the first term
on the right-hand side converges in distribution, note that for n = km this
term equals

ﬁ Z_; [\/% 72__: {T(X(=1)ena) Ti( Xarerya) — 7(0)i5}| - (3.21)

The difference between the first term on the right-hand side and (3.21) with
m equal to the integer part of n/k goes to zero in probability as n — oo. Since
T(X;) has moments of any order when X; ~ pg and 6 € int O, it follows by the
Cauchy-Schwarz inequality that [ Ti(z)*T;(y)?*Q%A(dz,dy) < oc. Moreover,
the terms in the sum in square brackets in (3.21) have zero expectation
under QY,, so we can apply the central limit theorem in Florens-Zmirou
(1989) to prove that the normalized sum in the square brackets converges
in distribution as m — oo. That the second and third terms on the right-
hand side of the expression for the difference between ¢ and ¢ converge in
distribution is the same result as Theorem 3.3. To prove this theorem, the
central limit theorem was used too. This completes the proof of the last part
of (3.20). The first part of (3.20) follows by similar, but slightly simpler,
arguments. The results about the order of convergence are obvious from the
proof of (3.20).

O

Finally, we consider tests of the hypothesis

H:0=0,.
Obvious test statistics are the Wald test statistics
n(0, — 00)TV(0) A1V (0)(6, — 6,)
and the pseudo score statistic
n" G (00)T AL G (60),

where

A, =V(0,)+ H(6,). (3.22)



Both of these test statistics are asymptotically y2-distributed with p degrees
of freedom as n — oo when the hypothesis is true. When we use [:]n, we
always assume that v(n) = o(y/n).

It is of some interest to study the limiting distribution of the log-likelihood
ratio test statistic, which is computed by most computer packages.

Proposition 3.7 Suppose that the hypotesis H is true. Then

—2log Q 2 M(60)Z1 + -+ + A(60) 2, (3.23)
as n — 0o, where A (6g), ..., \,(0o) are the eigenvalues of AQ%OV(HO)_lA@%O,
and where 7y, ..., 7, are independent x*(1)-distributed random variables.

A very accurate saddlepoint approximation to the limit distribution in (3.23)
was derived in Jensen (1995).

Proof: The result follows from Theorem 3.5 because
—2log Q = n(0, — 00)"V(60)(0,, — 6o) + 0,(1)
= 1A V0B, — 00)]T ALV (00)7 A1 (457 V (00) V(0 — 00)] + 0, (1),

O

In the one-dimensional case p = 1, we see that

—2log )
1+ H,(00)/V (60)

22 (1), (3.24)

as n — oo when H is true.

Similar results can easily be derived when testing more general hypotheses
about #. When the reduction in the degrees of freedom is one, a simple
normalization of the test statistic resulting in a y*(1) limit distribution can
be found in analogy with (3.24).

4 Generalized inverse Gaussian diffusions

In this section we introduce a flexible class of positive diffusions with in-
variant measures belonging to a particular exponential family, namely the
class of generalized inverse Gaussian distributions. These distributions were
introduced by Good (1953), and their statistical properties were studied in
detail by Jorgensen (1982). A generalized inverse Gaussian distribution has
density

—1
L /x)*K, (\/w) 2" exp [—
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with respect to the Lebesgue measure on (0,00). Here K. is the modified
Bessel function of the third kind with index 4. The parameter domain is as
follows. For v > 0, % > 0 and y > 0; for v = 0, ¥» > 0 and x > 0; for
v <0,% >0and y > 0. For v = —%, (4.1) is a standard inverse Gaussian
distribution; for y = 0, we get the gamma-distributions; and for ¥» = 0 the
upper tail is of the Pareto type. The diffusions discussed in this section
include the Cox-Ingersoll-Ross model from mathematical finance.
We consider diffusions given as solutions of

dX, = (B X2 = B X7 + B X7V ) dt + AXPAW,, Xo > 0. (4.2)

We define new parameters by 0; = 23;A72, 72 = 1,2, 3. Inference about 6y, 5,
and #3 can be drawn by the exponential family methods discussed in this
paper, when the diffusion is ergodic. We assume that a > 0 and A > 0 are
known. If @ and A are not known, inference about these parameters must be
drawn by other methods such as martingale estimating functions.

The scale measure has the density

s(z) = 27 exp[fyz + 03271, = > 0.

Since z% > 0 for > 0 and the function z72% is integrable on any compact
sub-interval of (0,00), it follows by a corollary to results in Engelbert and
Schmidt (1985) that (4.2) has a unique weak solution, provided that the scale
function S(z) = i s(y)dy satisfies

— 5(0) = S(c0) = co. (4.3)

The condition (4.3) clearly holds when 83 > 0 and 5 > 0. If 6; > 1, the
condition is also satisfied for 83 = 0, and if §; < 1, it holds for 33 = 0 too.
The speed measure has the density

272 exp[—bz — Os27'], = >0, (4.4)
which is a finite measure whenever v = 1 4+ 6; — 2a, ¥ = 265 and y = 263 be-
long to the parameter space of the generalized inverse Gaussian distribution.
In that case, the diffusion X is ergodic with an invariant measure that has
the density (4.1), provided that also the condition (4.3) is satisfied. Thus,
the parameter values for which the diffusion is ergodic are as follows. For
0y > 1,0, >0and 03 > 0; for 1 —2a < 6, < 1, 6, > 0 and 05 > 0; for
0 < 1—2a, 63 >0 and 3 > 0. This defines the set ©; introduced in Section
2. Note that when 3 = 0, the upper tail of the invariant measure is of the
Pareto type.

An interesting property of a solution of (4.2) is its revertion around the

level [31 4+ /3% + 45233)/(2532), when 32 > 0. If 8, = 0, it reverts around
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— 3/ B1, provided that 4y < 0. This cannot be called mean-reversion, a term
often used in econometrics, because of the non-linearity of the drift.

Another remarkable property of an inverse Gaussian diffusion X solving
(4.2) is that, by Tto’s formula, its inverse X! is also an inverse Gaussian
diffusion with diffusion coefficient Az?=%. Thus, if a = 1, the diffusion coef-
ficient is the same for X and X ~!. If, moreover, #; = 1 and 0; = 05 = 0, the
diffusions X and X! are identical.

For an ergodic process on (0,00) the boundary 0 is either an entrance
boundary or a natural boundary. For 3 > 0, it is an entrance boundary for
X when a < %, while it is natural when a > % It B3 =0, it is entrance for
1 <6, < 2 and natural when 6; > 2.

Let us finally consider three particular cases. When a = 0, the drift is
a(z) = pe™t — By + Bzx~% For By > 0 and B, = B3 = 0, the solution of
(4.2) is the Bessel process, which is not ergodic. However, if 8, or 3, are
chosen such that there is sufficient pull away from infinity (and of course still
enough pull away from zero), an ergodic diffusion is obtained. Next consider
o = 1, where the drift is a(z) = 3y — Bz + f327!. For 83 = 0, we obtain
the Cox-Ingersoll-Ross model for interest rates, while the radial Ornstein-
Uhlenbeck process (Karlin and Taylor, 1981, p. 333) is obtained for 3y = 0.
When o = 1, the drift is a(z) = iz — Brx? + fs.

A solution of the stochastic differential equation
dX; = {o(X)0' (X)) + Lo(X)? [(v = DX = L+ I X%} dt + o(X,)dW,
will also, under suitable regularity conditions, be ergodic with invariant mea-
sure given by (4.1). We have, however, in this paper decided to restrict the
attension to solutions of (4.2).
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