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Abstract

In 1982 Pimsner and Voiculescu computed the K0- and K1-groups of the reduced
group C∗-algebra C∗red(Fk) of the free group Fk on k generators and settled thereby
a long standing conjecture: C∗red(Fk) has no projections except for the trivial projec-
tions 0 and 1. Later simpler proofs of this conjecture were found by methods from
K-theory or from non-commutative di�erential geometry. In this paper we provide
a new proof of the fact that C∗red(Fk) is projectionless. The new proof is based on
random matrices and is obtained by a re�nement of the methods recently used by the
�rst and the third named author to show that the semigroup Ext(C∗red(Fk)) is not a
group for k ≥ 2. By the same type of methods we also obtain that two phenomena
proved by Bai and Silverstein for certain classes of random matrices: �no eigenvalues
outside (a small neighbourhood of) the support of the limiting distribution� and
�exact separation of eigenvalues by gaps in the limiting distribution� also hold for
arbitrary non-commutative selfadjoint polynomials of independent GUE, GOE or
GSE random matrices with matrix coe�cients.

1 Introduction.

In [HT] the �rst and the third named author proved the following extension of Voiculescu's
random matrix model for a semicircular system:

Let X
(n)
1 , . . . , X

(n)
r be r independent selfadjoint n × n random matrices from Gaussian

unitary ensembles (GUE) and with the scaling used in Voiculescu's paper [V1]. Moreover,
let x1, . . . , xr be a semicircular system in a C∗-probability space (A, τ) with τ faithful.
Then, for every polynomial p in r non-commuting variables,

lim
n→∞

‖p(X(n)
1 , . . . , X(n)

r )‖ = ‖p(x1, . . . , xr)‖ (1.1)

holds almost surely.
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The main steps in the proof of (1.1) were:

STEP 1 (Linearization trick). In order to prove (1.1), it is su�cient to show that
for every m ∈ N, every ε > 0 and every selfadjoint polynomial q in r non-commuting
variables with coe�cients in Mm(C) and with deg(q) = 1,

σ(q(X
(n)
1 , . . . , X(n)

r )) ⊆ σ(q(x1, . . . , xr)) + (−ε, ε) (1.2)

eventually as n → ∞ (almost surely). Here σ(·) denotes the spectrum of a matrix or of
an element in a C∗-algebra.

STEP 2 (Mean value estimate). If q is a polynomial of �rst degree with matrix
coe�cients as in step 1, then for every ϕ ∈ C∞c (R,R)

E{(trm ⊗ trn)ϕ(q(X
(n)
1 , . . . , X(n)

r ))} = (trm ⊗ τ)ϕ(q(x1, . . . , xr)) +O( 1
n2 ) (1.3)

where trm = 1
m
Trm is the normalized trace on Mm(C).

STEP 3 (Variance estimates). If q is a polynomial of �rst degree with matrix coe�-
cients as in step 1, then for every ϕ ∈ C∞c (R,R),

V{(trm ⊗ trn)ϕ(q(X
(n)
1 , . . . , X(n)

r ))} = O( 1
n2 ). (1.4)

Moreover, if ϕ′ = dϕ
dx

vanishes in a neighbourhood of σ(q(x1, . . . , xr)), then

V{(trm ⊗ trn)ϕ(q(X
(n)
1 , . . . , X(n)

r ))} = O( 1
n4 ). (1.5)

A standard application of the Borel-Cantelli lemma and the Chebychev inequality to (1.3)
and (1.5) gives that if ϕ′ vanishes on a neighbourhood of σ(q(x1, . . . , xr)), then

(trm ⊗ trn)ϕ(q(X
(n)
1 , . . . , X(n)

r )) = (trm ⊗ τ)ϕ(q(x1, . . . , xr)) +O(n−
4
3 ) (1.6)

holds almost surely, and from this (1.2) easily follows (cf. [HT, proof of Theorem 6.4]).

In [S], the second named author generalized the above to real and symplectic Gaussian
random matrices (the GOE- and GSE-cases). The main new problem in these two cases
is that (1.3) no longer holds. However, the following formula holds (cf. [S, Theorem 5.6]):

E{(trm ⊗ trn)ϕ(q(X
(n)
1 , . . . , X(n)

r ))} = (trm ⊗ τ)ϕ(q(x1, . . . , xr)) + 1
n
Λ(ϕ) +O( 1

n2 ), (1.7)

where Λ: C∞c (R) → C is a distribution (in the sense of L. Schwartz) depending on the
polynomial q and on the scalar �eld (R or H). Moreover, by [S, Lemma 5.5],

supp(Λ) ⊆ σ(q(x1, . . . , xr)). (1.8)

Using (1.7) and (1.8) instead of (1.3) the proofs of (1.2) and (1.1) could be completed
essentially as in the GUE-case.

The proof of the linearization trick relied on C∗-algebra techniques, namely on Stine-
spring's theorem and on Arveson's extension theorem for completely positive maps. In
the present paper we give a purely algebraic proof of the linearization trick which in turn
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allows us to work directly with polynomials of degree greater than 1. As a result, we
prove in Section 6 and Section 10 that (1.3) for the GUE-case (resp. (1.7) and (1.8)
for the GOE- and GSE-cases) holds for selfadjoint polynomials q of any degree with co-
e�cients in Mm(C). Also (1.4), (1.5) and (1.6) hold in this generality. Consequently,
(1.2) holds for all such polynomials q in all three cases (GUE, GOE and GSE). This is
the phenomenon �no eigenvalues outside (a small neighbourhood of) the support of the
limiting distribution�, which Bai and Silverstein obtained in [BS1] for a di�erent class of
selfadjoint random matrices.

Let us next discuss the application to projections in C∗red(Fr): Recall from [HT, Lemma 8.1]
that C∗red(Fr) has a unital, trace preserving embedding in C

∗(x1, . . . , xr,1), where x1, . . . , xr
is a semicircular system. If e is a projection in Mm(C∗(x1, . . . , xr,1)), then by standard
C∗-algebra techniques (cf. Section 7) there exists a projection f in Mm(C∗(x1, . . . , xr,1))
such that ‖e− f‖ < 1 and such that f takes the form

f = ϕ(q(x1, . . . , xr)),

where q is a selfadjoint polynomial in r non-commuting variables with coe�cients in
Mm(C), and ϕ is a C∞-function with compact support, such that ϕ only takes the values
0 and 1 is some neighbourhood of σ(q(x1, . . . , xr)).

Consider now random matrices X
(n)
1 , . . . , X

(n)
r as in the GUE-case described above. By

(1.6) we have that

(trm ⊗ trn)ϕ(q(X
(n)
1 , . . . , X(n)

r )) = (trm ⊗ τ)ϕ(q(x1, . . . , xr)) +O(n−
4
3 )

= (trm ⊗ τ)(f) +O(n−
4
3 )

holds almost surely and hence the corresponding unnormalized trace satis�es

(Trm ⊗ Trn)ϕ(q(X
(n)
1 , . . . , X(n)

r )) = n(Trm ⊗ τ)(f) +O(n−
1
3 ). (1.9)

Using that the left hand side of (1.9) is an integer for all large n ∈ N, it is not hard to
prove that (Trm⊗τ)(f) is an integer (cf. section 7 for details). Moreover, since ‖e−f‖ < 1
implies that e = ufu∗ for a unitary u ∈Mm(C∗(x1, . . . , xr, 1)), we also have

(Trm ⊗ τ)(e) ∈ Z. (1.10)

Hence, using the existence of a unital trace-preserving embedding of C∗red(Fr) into
C∗(x1, . . . , xr,1), it follows that:

(Trm ⊗ τ)(e) ∈ Z for all projections e ∈Mm(C∗red(Fr)). (1.11)

In particular:
C∗red(Fr) has no projections except 0 and 1 . (1.12)

The two statements (1.11) and (1.12) were �rst obtained by Pimsner and Voiculescu in
1982 (cf. [PV]) by proving that K0(C∗red(Fr)) = Z, where the K0-class [1] of the unit in
C∗red(Fr) corresponds to 1 ∈ Z. Simpler proofs of K0(C∗red(Fr)) = Z were later obtained
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by Cuntz [Cu1] and Lance [L]. Connes gave in [Co, pp. 269�272] a more direct proof of
(1.12) based on Fredholm modules. Connes' argument can be further simpli�ed to a short
selfcontained proof without explicit mentioning of Fredholm modules ([Cu2], [CF]).

It is an elementary consequence of (1.11) that for every selfadjoint polynomial q in r
non-commuting variables and with coe�cients in Mm(C), the spectrum of q(x1, . . . , xr)
has at most m connected components, that is

σ(q(x1, . . . , xr)) = I1 ∪ · · · ∪ Ij, (disjoint union),

where each Ii is a compact interval or a one-point set (cf. Proposition 8.1), and j ≤ m.
Let

1 = e1 + · · ·+ ej

be the corresponding decomposition of the unit in Mm(C∗(x1, . . . , xr,1)) into ortogonal
projections, and put

ki = (Trm ⊗ τ)(ei) ∈ Z.

Let now 0 < ε < 1
3
ε0 where ε0 is the smallest length of the gaps between the sets I1, . . . , Ij.

In Section 8 and Section 11 we prove that the number of eigenvalues of q(X
(n)
1 , . . . , X

(n)
r )

in the open intervals Ii + (−ε, ε), i = 1, . . . , j, are exactly nki eventually as n → ∞
(almost surely) in all three cases (GUE, GOE and GSE). This is the phenomenon �Exact
separation of eigenvalues� by the gaps in the support of the limiting distribution which Bai
and Silverstein obtained in [BS2] for the class of selfadjoint random matrices previously
studied in [BS1].

2 Matrix Results.

2.1 Proposition. Let d,m and m′ be positive integers and let p be a polynomial in
Mm,m′ ⊗ C〈X1, . . . , Xr〉 of degree d. Then there exist positive integers m1,m2, . . . ,md+1

and polynomials

uj ∈Mmj ,mj+1
(C)⊗ C〈X1, . . . , Xr〉, (j = 1, 2, . . . , d),

such that

(i) m1 = m and md+1 = m′,

(ii) deg(uj) ≤ 1 for all j in {1, 2, . . . , r},

(iii) p = u1u2 · · ·ud.

Proof. The proof proceeds by induction on d. Noting that the case d = 1 is trivial,
we assume that d ≥ 2 and that the proposition has been veri�ed for all polynomials
in Mm,m′(C) ⊗ C〈X1, . . . , Xr〉 og degree at most d − 1. Given then a polynomial p in
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Mm,m′(C) ⊗ C〈X1, . . . , Xr〉 of degree d, we may, setting X0 = 1C〈X1,...,Xr〉, write p in the
form

p(X1, . . . , Xr) =
∑

0≤i1,i2,...,id≤r

c(i1, i2, . . . , id)⊗Xi1Xi2 · · ·Xid ,

for suitable matrices

c(i1, i2, . . . , id) ∈Mm,m′(C), (i1, i2, . . . , id ∈ {0, 1, . . . , r}).

For any i1 in {0, 1, . . . , r}, we put

Y (i1) =
∑

0≤i2,...,id≤r

c(i1, i2, . . . , id)⊗Xi2 · · ·Xid .

Note then that

p(X1, . . . , Xr) =
r∑

i1=0

(1m ⊗Xi1)
( ∑

0≤i2,...,id≤r

c(i1, i2, . . . , id)⊗Xi2 · · ·Xid

)

=
r∑

i1=0

(1m ⊗Xi1)Y (i1)

=
(
1m ⊗X0 1m ⊗X1 · · · 1m ⊗Xr

)
·


Y (0)
Y (1)
...

Y (r)


= u1(X1, . . . , Xr) · p′(X1, . . . , Xr),

where

u1(X1, . . . , Xr) :=
(
1m ⊗X0 1m ⊗X1 · · · 1m ⊗Xr

)
∈Mm,(r+1)m(C)⊗C〈X1, . . . , Xr〉,

and

p′(X1, . . . , Xr) :=


Y (0)
Y (1)
...

Y (r)

 ∈M(r+1)m,m′(C)⊗ C〈X1, . . . , Xr〉.

We note that deg(u1) = 1 and that deg(p′) ≤ d−1. By the induction hypothesis, there are
positive integers m2,m3, . . . ,md+1 and polynomials uj in Mmj ,mj+1

(C) ⊗ C〈X1, . . . , Xr〉
(j = 2, 3, . . . , d) such that

(i′) m2 = (r + 1)m and md+1 = m′,

(ii′) deg(uj) ≤ 1, for all j in {2, 3, . . . , d},

(iii′) p′ = u2u3 . . . ud.
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Now, p = u1p
′ = u1u2 · · ·ud and we have the desired decomposition. �

2.2 Remark. By inspection of the proof of Proposition 2.1, it is apparent that the de-
composition, implicitly given in that proposition, is explicitly given as follows:

m1 = m, m2 = (r + 1)m, m3 = (r + 1)m2 = (r + 1)2m, . . . ,md = (r + 1)d−1m,

md+1 = m′

uj =
(
1mj ⊗X0 1mj ⊗X1 · · · 1mj ⊗Xr

)
, (j = 1, 2, . . . , d− 1),

ud =
(∑r

id=0 c(i1, . . . , id−1, id)⊗Xid

)
0≤i1,i2,...,id−1≤r

,

where ud should be thought of as a block column matrix with (block) rows indexed by
the tuples (i1, i2, . . . , id−1) in a certain order.

Note in particular that the polynomials u1, u2, . . . , ud−1 are basicly canonical, in the sense
that they only depend on p through the degree d and the dimension m. Conversely, the
polynomial ud basicly contains all information about p.

2.3 Proposition. Let A be an algebra with unit 1A and let d,m,m1,m2, . . . ,md+1 be
positive integers such that m1 = m = md+1. Put k =

∑d
j=1 mj.

Consider further for each j in {1, 2, . . . , d} a matrix uj from Mmj ,mj+1
(A), and note that

u1u2 · · ·ud ∈Mm(A). For each λ in Mm(A), de�ne the matrix A(λ) in Mk(A) by

A(λ) =



λ −u1 0 0 · · · 0
0 1m2 −u2 0 · · · 0
0 0 1m3 −u3 · · · 0
...

...
...

. . . . . .
...

0 0 0 · · · 1md−1
−ud−1

−ud 0 0 · · · 0 1md


, (2.1)

where 1mj denotes the unit in Mmj(A). For any λ in Mm(C) we then have

λ− u1u2 · · ·ud is invertible in Mm(A) ⇐⇒ A(λ) is invertible in Mk(A),

in which case
A(λ)−1 = B(λ) + C,

where

B(λ) =



1m
u2u3 · · ·ud
u3u4 · · ·ud
u4 · · ·ud

...
ud


(
λ− u1u2 · · ·ud

)−1 (
1m u1 u1u2 u1u2u3 · · · u1u2 · · ·ud−1

)
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and

C =



0 0 0 0 0 · · · 0
0 1m2 u2 u2u3 u2u3u4 · · · u2u3 · · ·ud−1

0 0 1m3 u3 u3u4 · · · u3u4 · · ·ud−1

0 0 0 1m4 u4 · · · u4u5 · · ·ud−1
...

...
...

...
. . . . . .

...
0 0 0 0 · · · 1md−1

ud−1

0 0 0 0 · · · 0 1md


.

Note, in particular, that (λ − u1u2 · · ·ud)−1 is the (block-) entry at position (1, 1) of
A(λ)−1.

Proof. At �rst assume that A(λ) is invertible with inverse F (λ). We write F (λ) in block
matrix form as

F (λ) =
(
fi,j(λ)

)
1≤i,j≤d,

corresponding to the block matrix form of A(λ):

A(λ) =
(
ai,j(λ)

)
1≤i,j≤d,

speci�ed above.

>From the equality 1k = A(λ)F (λ), we get, in particular, the identities

d∑
i=1

ai,j(λ)fi,1(λ) = δj,1, (j = 1, 2, . . . , n), (2.2)

where

δi,j =

{
1mi , if i = j,

000mi×mj if i 6= j.

For j = 1, (2.2) becomes
λf1,1(λ)− u1f2,1(λ) = 1m1 , (2.3)

and for j in {2, 3, . . . , d− 1}, we get

fj,1(λ)− ujfj+1,1(λ) = 000mj×m1 , i.e., fj,1(λ) = ujfj+1,1(λ). (2.4)

Finally, for j = d, (2.2) yields

−udf1,1(λ) + fd,1(λ) = 000md×m1 i.e., fd,1(λ) = udf1,1(λ). (2.5)

Then, by successive applications of the formulae (2.4) and (2.5), we �nd that

f2,1(λ) = u2f3,1(λ) = u2u3f4,1(λ) = · · · = u2u3 · · ·ud−1fd,1(λ) = u2u3 · · ·udf1,1(λ).

Inserting this in (2.4), we obtain

1m1 = λf1,1(λ)− u1

(
u2u3 · · ·udf1,1(λ)

)
=
(
λ− u1u2 · · ·ud

)
f1,1(λ).
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To verify that also f1,1(λ)(λ−u1u2 · · ·ud
)

= 1m1 , we consider the equality F (λ)A(λ) = 1k,
from which

d∑
i=1

f1,i(λ)ai,j(λ) = δ1,j, (j = 1, 2, . . . d).

For j = 1 we obtain
f1,1(λ)λ− f1,d(λ)ud = 1m1 , (2.6)

and for j in {2, 3, . . . , d},

f1,j−1(λ)uj−1 + f1,j(λ) = 000m1×mj i.e., f1,j(λ) = f1,j−1(λ)uj−1. (2.7)

By successive applications of (2.7),

f1,d(λ) = f1,d−1(λ)ud−1 = f1,d−2(λ)ud−2ud−1 = · · · = f1,1(λ)u1u2 · · ·ud−1,

and inserting this in (2.6), we obtain

1m1 = f1,1(λ)λ−
(
f1,1(λ)u1u2 · · ·ud−1

)
ud = f1,1(λ)

(
λ− u1u2 · · ·ud

)
,

as desired.

Assume next that (λ−u1u2 · · ·ud) is invertible in Mm(A) and consider the matrices B(λ)
and C introduced in Proposition 2.3. At �rst we show that

A(λ)
(
B(λ) + C

)
= 1k.

It is easily seen that

A(λ)



1m
u2u3 · · ·ud
u3u4 · · ·ud
u4 · · ·ud

...
ud


=



λ− u1u2 · · ·ud
0
0
0
...
0


so that

A(λ)B(λ) =


1m
0
0
...
0


(
1 u1 u1u2 u1u2u3 · · · u1u2 · · ·ud−1

)

=


1 u1 u1u2 u1u2u3 · · · u1u2 · · ·ud−1

0 0 0 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 0

 .
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It thus remains to verify that

A(λ)C =



0 −u1 −u1u2 −u1u2u3 · · · −u1u2 · · ·ud−1

0 1m2 0 0 · · · 0
0 0 1m3 0 · · · 0
0 0 0 1m4 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1md


. (2.8)

To this end, note that the �rst column in A(λ)C consists entirely of zeroes and that the
second column in A(λ)C equals that of A(λ).

Note next that for j in {3, 4, . . . , d}, the entry at position (1, j) is

[
A(λ)C

]
1,j

=
(
λ −u1 0 · · · 0

)



0
u2u3 · · ·uj−1

u3u4 · · ·uj−1
...

uj−1

1mj
0
...
0


= −u1u2 · · ·uj−1.

Next, if i ∈ {2, 3, . . . , d − 1} and j ∈ {3, 4, . . . , d}, then the entry of A(λ)C at position
(i, j) is

[
A(λ)C

]
i,j

=
(
0 · · · 0 1mi −ui 0 · · · 0

)



0
u2u3 · · ·uj−1

u3u4 · · ·uj−1
...

uj−1

1mj
0
...
0



=


0, if i > j,

1mi , if i = j,

uiui+1 · · ·uj−1 − uiui+1 · · ·uj−1 = 0, if i ≤ j − 1.
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Finally, for j in {3, 4, . . . , k}, the entry at position (d, j) is

[
A(λ)C

]
d,j

=
(
−ud 0 · · · 0 1md

)



0
u2u3 · · ·uj−1

u3u4 · · ·uj−1
...

uj−1

1mj
0
...
0


=

{
0, if j < d,

1md if j = d.

Hence (2.8) holds, and therefore A(λ)(B(λ) + C) = 1k.

To verify that also (
B(λ) + C

)
A(λ) = 1k,

at �rst note that(
1m u1 u1u2 u1u2u3 · · · u1u2 · · ·ud−1

)
A(λ) =

(
λ− u1u2 . . . ud 0 · · · 0

)
so that

B(λ)A(λ) =


1m

u2u3 · · ·ud
u3u4 · · ·ud

...
ud


(
1m 0 · · · 0

)
=


1m 0 · · · 0

u2u3 · · ·ud 0 · · · 0
u3u4 · · ·ud 0 · · · 0

...
...

. . .
...

ud 0 · · · 0

 .

It thus remains to show that

CA(λ) =


0 0 0 · · · 0

−u2u3 · · ·ud 1m2 0 · · · 0
−u3u4 · · ·ud 0 1m3 · · · 0

...
...

...
. . .

...
−ud 0 0 · · · 1md

 .

This follows easily by considerations similar to those described above. �

2.4 Corollary. Let p be a polynomial in Mm(C) ⊗ C〈X1, . . . , Xr〉 of degree d, and let
x1, . . . , xr be elements in a unital algebra A. As in Proposition 2.1, choose a factorization
of p into polynomials of �rst degree,

p = u1u2 · · ·ud.

Put
vj = uj(x1, . . . , xr), (j = 1, 2, . . . , d),
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and let λ ∈Mm(C). Then λ⊗ 1A − p(x1, . . . , xr) is invertible in Mm(A) i� the matrix

A(λ, v1, . . . , vr) =



λ⊗ 1n −v1 0 0 · · · 0
0 1m2 ⊗ 1n −v2 0 · · · 0
0 0 1m3 ⊗ 1n −v3 · · · 0
...

...
...

. . . . . .
...

0 0 0 · · · 1md−1
⊗ 1n −vd−1

−vd 0 0 · · · 0 1md ⊗ 1n


,

is invertible in Mk(A).

By application of Corollary 2.4, one can give a purely algebraic proof of the following
�linearization trick� which was obtained in [HT] by use of Stinespring's Theorem and
Arveson's Extension Theorem for completely positive maps:

2.5 Corollary. [HT, Theorem 2.2] Let A and B be unital C∗-algebras, and let x1, . . . , xr ∈
Asa, y1, . . . , yr ∈ Bsa. If for all m ∈ N and all a0, a1, . . . , ar ∈Mm(C)sa we have that

σ
(
a0 ⊗ 1A +

∑
r

ai ⊗ xi
)
⊇ σ

(
a0 ⊗ 1B +

∑
r

ai ⊗ yi
)
, (2.9)

then there exists a unital ∗-homomorphism

φ : C∗(1A, x1, . . . , xr)→ C∗(1B, y1, . . . , yr),

such that φ(xi) = yi for i = 1, . . . , r.

Proof. As in step I of the proof of [HT, Theorem 2.2], a simple 2 × 2-matrix argument
shows that if (2.9) holds, then it also holds for arbitrary elements a0, a1, . . . , ar ∈Mm(C).
That is, for every polynomial q of degree at most 1 in Mm(C) ⊗ C〈X1, . . . , Xr〉 one has
that

σ(q(x1, . . . , xr)) ⊇ σ(q(y1, . . . , yr)). (2.10)

Now, let p ∈ C〈X1, . . . , Xr〉 be a polynomial of degree d ≥ 1, and as in Proposition 2.1
(with m = 1), choose a factorization

p = u1u2 · · ·ud.

For j = 1, . . . , d, put
vj = uj(x1, . . . , xr)

and
wj = uj(y1, . . . , yr).

Then, with the notation of Corollary 2.4, for λ ∈ C we have that

λ1A − p(x1, . . . , xr) ∈ Ainv ⇔ A(λ, v1, . . . , vd) ∈Mk(A)inv

and
λ1B − p(y1, . . . , yr) ∈ Binv ⇔ A(λ,w1, . . . , wd) ∈Mk(B)inv.

11



Since the ui's have degree 1,
q := A(λ, u1, . . . , ud)

is a polynomial of degree 1 in Mk(C) ⊗ C〈X1, . . . , Xr〉. Note that A(λ, v1, . . . , vd) =
q(x1, . . . , xr) and A(λ,w1, . . . , wd) = q(y1, . . . , yr). Hence, by (2.10),

σ(A(λ, v1, . . . , vd)) ⊇ σ(A(λ,w1, . . . , wd)).

In particular,

A(λ, v1, . . . , vd) ∈Mk(A)inv ⇒ A(λ,w1, . . . , wd) ∈Mk(B)inv.

Altogether, we have shown that

λ1A − p(x1, . . . , xr) ∈ Ainv ⇒ λ1B − p(y1, . . . , yr) ∈ Binv,

i.e.
σ(p(x1, . . . , xr)) ⊇ σ(p(y1, . . . , yr)) (2.11)

holds for all polynomials p ∈ C〈X1, . . . , Xr〉. In particular, the spectral radii, r(p(x1, . . . , xr))
and r(p(y1, . . . , yr)) satisfy

r(p(x1, . . . , xr)) ≥ r(p(y1, . . . , yr)). (2.12)

Applying (2.12) to the self-adjoint polynomial p∗p, we get that

‖p(x1, . . . , xr)‖2 ≥ ‖p(y1, . . . , yr)‖2.

Hence, the map

φ0 : p(x1, . . . , xr) 7→ p(y1, . . . , yr), (p ∈ C〈X1, . . . , Xr〉),

is well-de�ned and extends by continuity to a unital ∗-homomorphism φ from C∗(1A, x1, . . . , xr)
into C∗(1B, y1, . . . , yr) with φ(xi) = yi, i = 1, . . . , r. �

3 Norm estimates.

In this section we consider a �xed self-adjoint polynomial p in r non-commuting variables
with coe�cients in Mm(C), i.e. p ∈ (Mm(C) ⊗ C〈X1, . . . , Xr〉)sa, and for each n ∈ N,
we let X

(n)
1 , . . . , X

(n)
r be stochastically independent random matrices from SGRM (n, 1

n
).

De�ne self-adjoint random matrices (Qn)∞n=1 by

Qn(ω) = p(X
(n)
1 (ω), . . . , X(n)

r (ω)), (ω ∈ Ω), (3.1)

where (Ω,F, P ) denotes the underlying probability space.

With d = deg(p) we may, according to Proposition 2.1, choose m1, . . . ,md+1 ∈ N with
m = m1 = md+1, and polynomials uj ∈ Mmj ,mj+1

(C) ⊗ C〈X1, . . . , Xr〉 of �rst degree,

12



j = 1, . . . , d, such that p = u1u2 · · ·ud. For each n ∈ N de�ne random matrices u
(n)
j ,

j = 1, . . . , d, by

u
(n)
j (ω) = uj(X

(n)
1 (ω), . . . , X(n)

r (ω)), (ω ∈ Ω).

For λ ∈Mm(C) we put Imλ = 1
2i

(λ− λ∗) as in [HT, Section 3].

Since Qn(ω) is self-adjoint, λ ⊗ 1n − Qn(ω) is invertible for every λ ∈ Mm(C) with Imλ
positive de�nite (cf. [HT, Lemma 3.1]). Then, according to Corollary 2.4, the random
matrix

An(λ) =



λ⊗ 1n −u(n)
1 0 0 · · · 0

0 1m2 ⊗ 1n −u(n)
2 0 · · · 0

0 0 1m3 ⊗ 1n −u(n)
3 · · · 0

...
...

...
. . . . . .

...

0 0 0 · · · 1md−1
⊗ 1n −u(n)

d−1

−u(n)
d 0 0 · · · 0 1md ⊗ 1n


(3.2)

is (point-wise) invertible in Mk(C), where k =
∑d

i=1 mi.

3.1 Lemma. For every p ∈ N there exist constants C1,p, C2,p ≥ 0, such that for all m ∈ N
and for all λ ∈Mm(C) with Imλ positive de�nite,

sup
n∈N

E{‖An(λ)−1‖p} ≤ C1,p + C2,p‖(Imλ)−1‖p.

Proof. Let p ∈ N. According to Proposition 2.3 we may write

An(λ)−1 = Cn +B(1)
n (λ⊗ 1n −Qn)−1B(2)

n ,

where

Cn =



0 0 0 0 0 . . . 0

0 1m2 ⊗ 1n u
(n)
2 u

(n)
2 u

(n)
3 u

(n)
2 u

(n)
3 u

(n)
4 . . . u

(n)
2 u

(n)
3 · · ·u

(n)
d−1

0 0 1m3 ⊗ 1n u
(n)
3 u

(n)
3 u

(n)
4 . . . u

(n)
3 u

(n)
4 · · ·u

(n)
d−1

0 0 0 1m4 ⊗ 1n u
(n)
4 . . . u

(n)
4 u

(n)
5 · · ·u

(n)
d−1

...
...

...
...

. . . . . .
...

0 0 0 0 . . . 1md−1
⊗ 1n u

(n)
d−1

0 0 0 0 . . . 0 1md ⊗ 1n


,

B(1)
n =


1m ⊗ 1n

u
(n)
2 u

(n)
3 · · ·u

(n)
d

u
(n)
3 u

(n)
4 · · ·u

(n)
d

...

u
(n)
d

 ,
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and
B(2)
n =

(
1m ⊗ 1n u

(n)
1 u

(n)
1 u

(n)
2 . . . u

(n)
1 u

(n)
2 · · ·u

(n)
d−1

)
.

By [HT, Lemma 3.1], ‖(λ⊗ 1n −Qn)−1‖ ≤ ‖(Imλ)−1‖, and therefore

E{‖An(λ)−1‖p} ≤ E{(‖Cn‖+ ‖B(1)
n ‖‖B(2)

n ‖‖(Imλ)−1‖)p}
≤ E{(2 max{‖Cn‖, ‖B(1)

n ‖‖B(2)
n ‖‖(Imλ)−1‖})p}

≤ 2p E{‖Cn‖p + ‖B(1)
n ‖p‖B(2)

n ‖p‖(Imλ)−1‖p}. (3.3)

With
Kn = max{1, ‖u(n)

1 ‖, ‖u
(n)
2 ‖, . . . , ‖u

(n)
d ‖} (3.4)

one easily proves that

‖Cn‖ ≤ d− 1 + d2Kd−2
n ≤ d2(1 +Kd

n),

implying that
‖Cn‖p ≤ 2pd2p(1 +Kdp

n ) ≤ 2pd2p(1 +K2pd
n ). (3.5)

Moreover,
‖B(1)

n ‖p‖B(2)
n ‖p ≤ d2pK2p(d−1)

n ≤ d2pK2pd
n . (3.6)

Now, according to (3.4),

K2pd
n ≤ 1 +

d∑
j=1

‖u(n)
j ‖2pd. (3.7)

Since u
(n)
j is of �rst degree, we may choose a

(j)
0 , . . . , a

(j)
r ∈Mmj ,mj+1

(C) such that

u
(n)
j = a

(j)
0 ⊗ 1n +

r∑
i=1

a
(j)
i ⊗X

(n)
i .

Hence

‖u(n)
j ‖2pd ≤ (1 + r)2pd max{‖a(j)

0 ‖, ‖a
(j)
1 ‖‖X

(n)
1 ‖, . . . , ‖a(j)

r ‖‖X(n)
r ‖}2pd. (3.8)

According to [S, Lemma 6.4],

sup
n

(E{‖X(n)
i ‖2pd}) <∞,

and combining this fact with (3.3), (3.5), (3.6), (3.7) and (3.8) we obtain the desired
estimate. �
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3.2 Lemma. Let x1, . . . , xr be a semicircular system in a C∗-probability space (A, τ),
and let

q = p(x1, . . . , xr). (3.9)

Then again, with uj = uj(x1, . . . , xr), j = 1, . . . , d, the matrix

A(λ) =



λ⊗ 1A −u1 0 0 · · · 0
0 1m2 ⊗ 1A −u2 0 · · · 0
0 0 1m3 ⊗ 1A −u3 · · · 0
...

...
...

. . . . . .
...

0 0 0 · · · 1md−1
⊗ 1A −ud−1

−ud 0 0 · · · 0 1md ⊗ 1A


is invertible for every λ ∈ Mm(C) with Imλ > 0. Moreover, for every p ∈ N there exist
constants C ′1,p and C

′
2,p such that

‖A(λ)−1‖p ≤ C ′1,p + C ′2,p‖(Imλ)−1‖p (3.10)

holds for every λ ∈Mm(C) with Imλ positive de�nite.

Proof. It follows again form [HT, Lemma 3.1] that λ ⊗ 1A − q is invertible. Hence, by
Proposition 2.3, A(λ) is invertible with

A(λ)−1 = C +B(1)(λ⊗ 1A − q)−1B(2),

where

C =



0 0 0 0 0 . . . 0
0 1m2 ⊗ 1A u2 u2u3 u2u3u4 . . . u2u3 · · ·ud−1

0 0 1m3 ⊗ 1A u3 u3u4 . . . u3u4 · · ·ud−1

0 0 0 1m4 ⊗ 1A u4 . . . u4u5 · · ·ud−1
...

...
...

...
. . . . . .

...
0 0 0 0 . . . 1md−1

⊗ 1A ud−1

0 0 0 0 . . . 0 1md ⊗ 1A


,

B(1) =


1m ⊗ 1A

u2u3 · · ·ud
u3u4 · · ·ud

...
ud

 ,

and
B(2) =

(
1m ⊗ 1A u1 u1u2 . . . u1u2 · · ·ud−1

)
.

Then, since ‖(λ⊗ 1A − q)−1‖ ≤ ‖(Imλ)−1‖, we have as in the proof of Lemma 3.1 that

‖A(λ)−1‖p ≤ 2p(‖C‖p + ‖B(1)‖p‖B(2)‖p‖(Imλ)−1‖p),

and the claim follows. �
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4 The master equation and master inequality.

In this section we prove generalizations of the master equation and master inequal-
ity from [HT]. These generalizations will allow us to handle self-adjoint polynomials

p(X
(n)
1 , . . . , X

(n)
r ) of arbitrary degree in r independent random matrices from SGRM (n, 1

n
).

Let r and n be positive integers. As in [HT, Section 3], we shall consider the real vector
space (Mn(C)sa)

r, which we denote by Er,n. We equip Er,n with the inner product 〈·, ·〉e
given by

〈(A1, . . . , Ar), (B1, . . . , Br)〉e = Trn

( r∑
j=1

AjBj

)
, ((A1, . . . , Ar), (B1, . . . , Br) ∈ Er,n),

and we denote the corresponding norm by ‖ · ‖e. Still following [HT], we consider the
linear isomorphism Ψ0 between Mn(C)sa and R

n2
given by

Ψ0((auv)1≤u,v≤n) =
(
(auu)1≤u≤n, (

√
2Re(auv))1≤u<v≤n, (

√
2Im(aub))1≤u<v≤n

)
, (4.1)

for (auv)1≤u,v≤n in Mn(C)sa. We consider further the natural extension Ψ: Er,n → R
rn2

of
Ψ0 given by

Ψ(A1, . . . , Ar) = (Ψ0(A1), . . . ,Ψ0(Ar)), (A1, . . . , Ar ∈Mn(C)sa).

We note that Ψ is an isometry between (Er,n, ‖ · ‖e) and Rrn
2
equipped with its usual

Hilbert space norm. Accordingly, we shall identify Er,n with Rrn
2
via Ψ.

In the following we consider a �xed self-adjoint polynomial p fromMm(C)⊗C〈X1, . . . , Xr〉
of degree d and the corresponding polynomials

uj = uj(X1, . . . , Xr) ∈Mmj ,mj+1
(C)⊗ C〈X1, . . . , Xr〉, (j = 1, 2, . . . , d),

introduced in Proposition 2.1. We put k = m1 +m2 + · · ·md.

We consider further independent random matrices X
(n)
1 , . . . , X

(n)
r from SGRM(n, 1

n
) and

a �xed matrix λ from Mm(C), such that Im(λ) is positive de�nite. We may then consider

the (random) matrix A(λ,X
(n)
1 , . . . , X

(n)
r ) de�ned in Corollary 2.4. Since the polynomials

u1, . . . , ud are of degree 1, we may write

A(λ,X
(n)
1 , . . . , X(n)

r ) =

(
λ 0
0 1k−m

)
⊗ 1n − a0 ⊗ 1n −

r∑
j=1

ai ⊗X(n)
i ,

for suitable matrices a0, a1, . . . , ar in Mk(C). We put

Λ =

(
λ 0
0 1k−m

)
and Sn = a0 ⊗ 1n +

r∑
j=1

aj ⊗X(n)
j , (4.2)

so that
A(λ,X

(n)
1 , . . . , X(n)

r ) = Λ⊗ 1n − Sn.
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According to Corollary 2.4, Λ⊗1n−Sn is invertible, and hence we may consider the k×k
matrix

Hn(λ) = (idk ⊗ trn)
[
(Λ⊗ 1n − Sn)−1

]
. (4.3)

The following lemma generalizes [HT, Lemma 3.5]:

4.1 Lemma. WithHn(λ) as de�ned in (4.3), we have for any j in {1, 2, . . . , r} the formula

E

{
Hn(λ)ajHn(λ)

}
= E

{
(idk ⊗ trn)

[
(1k ⊗X(n)

j ) · (Λ⊗ 1n − Sn)−1
]}
.

Proof. For any v1, . . . , vr ∈Mn(C)sa we may consider the matrix A(λ, v1, . . . , vr) described
in Corollary 2.4, and we clearly have that

A(λ, v1, . . . , vr) = Λ⊗ 1n −−a0 ⊗ 1n −
r∑
j=1

aj ⊗ vj,

with Λ, a1, . . . , ar as above. According to Corollary 2.4, we may then consider the mapping
F̃ : Er,n →Mk(C)⊗Mn(C) given by

F̃ (v1, . . . , vr) =
(
(Λ− a0)⊗ 1n −

∑r
j=1 aj ⊗ vj

)−1
, ((v1, . . . , vr) ∈ Er,n).

We consider furthermore the mapping F : Rrn
2 →Mk(C)⊗Mn(C), given by

F = F̃ ◦Ψ−1.

Note then that

(Λ⊗ 1n − Sn)−1 = F̃ (X
(n)
1 , . . . , X(n)

r ) = F (Ψ(X
(n)
1 , . . . , X(n)

r )), (4.4)

where Ψ(X
(n)
1 , . . . , X

(n)
r ) = (γ1, γ2, . . . , γrn2) with γ1, γ2, . . . , γrn2 ∼ i.i.d. N(0, 1

n
).

According to the proof of [HT, Lemma 3.1], we have that∥∥F̃ (v1, . . . , vr)
∥∥ ≤ h(‖v1‖, . . . , ‖vr‖)(1 + ‖(Imλ)−1‖), (4.5)

for some polynomial h in C[X1, . . . , Xr]. From (4.4) and (4.5) it follows �rstly that
that the expectations in Lemma 4.1 are well-de�ned. In addition, (4.5) shows that the
function F is a polynomially bounded function of rn2 real variables. In order to apply
[HT, Lemma 3.3], we need to check that the partial derivatives of F are polynomially
bounded as well. To this end, consider the standard orthonormal basis for Mn(C)sa:

e(n)
u,u, (1 ≤ u ≤ n)

f (n)
u,v = 1√

2

(
e

(n)
u,v + e

(n)
v,u

)
(1 ≤ u < v ≤ n),

g(n)
u,v = i√

2

(
e

(n)
u,v − e(n)

v,u

)
(1 ≤ u < v ≤ n),
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where {e(n)
u,v | 1 ≤ u, v ≤ n} are the standard n × n matrix units. The correponding

orthonormal basis for Er,n is

e
(n)
j,u,u = (0, . . . , 0, e(n)

u,u, 0, . . . , 0), (1 ≤ j ≤ r, 1 ≤ u ≤ n)

f
(n)
j,u,v = (0, . . . , 0, f (n)

u,v , 0, . . . , 0), (1 ≤ j ≤ r, 1 ≤ u < v ≤ n),

g
(n)
j,u,v = (0, . . . , 0, g(n)

u,v , 0, . . . , 0), (1 ≤ j ≤ r, 1 ≤ u < v ≤ n),

with the non-zero entry in the j'th slot. Note that the images by Ψ of these basis vectors
is exactly the standard orthonormal basis for Rrn

2
. Hence, the partial derivatives of F at

a point ξ in Rrn
2
are, setting (v1, . . . , vr) = Ψ−1(ξ),

d

dt

∣∣∣
t=0
F
(
ξ+tΨ(e

(n)
j,u,u)

)
=

d

dt

∣∣∣
t=0
F̃
(
(v1, . . . , vr) + te

(n)
j,u,u

)
=

d

dt

∣∣∣
t=0
F̃
(
v1, . . . , vj−1, vj + te(n)

u,u, vj+1, . . . , vr
)

=
d

dt

∣∣∣
t=0

(
(Λ− a0)⊗ 1n −

∑r
i=1 ai ⊗ vi − t(aj ⊗ e

(n)
u,u)
)−1

=
(
(Λ− a0)⊗ 1n −

∑r
i=1 ai ⊗ vi

)−1(
aj ⊗ e(n)

u,u

)(
(Λ− a0)⊗ 1n −

∑r
i=1 ai ⊗ vi)

)−1
,

(4.6)

where the last equality uses [HT, Lemma 3.2]. We �nd similarly that

d

dt

∣∣∣
t=0
F
(
ξ+tΨ(f

(n)
j,u,v)

)
=(

(Λ− a0)⊗ 1n −
∑r

i=1 ai ⊗ vi
)−1(

aj ⊗ f (n)
u,v

)(
(Λ− a0)⊗ 1n −

∑r
i=1 ai ⊗ vi

)−1
,

d

dt

∣∣∣
t=0
F
(
ξ+tΨ(g

(n)
j,u,v)

)
=(

(Λ− a0)⊗ 1n −
∑r

i=1 ai ⊗ vi
)−1(

aj ⊗ g(n)
u,v

)(
(Λ− a0)⊗ 1n −

∑r
i=1 ai ⊗ vi

)−1
.

Appealing once more to (4.5), it follows that the partial derivatives of F are polynomially
bounded as well. Hence, we may apply [HT, Lemma 3.3] to F and the i.i.d. Gaussian

variables Ψ(X
(n)
1 , . . . , X

(n)
r ) = (γ1, γ2, . . . , γrn2). For any j in {1, 2, . . . , r} put

X
(n)
j,u,u = (X

(n)
j )kk, (1 ≤ u ≤ n),

Y
(n)
j,u,v =

√
2Re(X

(n)
j )u,v, (1 ≤ u < v ≤ n),

Z
(n)
j,kl =

√
2Im(X

(n)
j )u,v, (1 ≤ u < v ≤ n),

and note that these random variables are the coe�cients of Ψ(X
(n)
1 , . . . , X

(n)
r ) w.r.t. the

standard orthonormal basis for Rrn
2
, in the sense that

Ψ(X
(n)
1 , . . . , X(n)

r ) =
r∑
j=1

( n∑
u=1

X
(n)
j,u,uΨ(e

(n)
j,u,u)+

∑
1≤u<v≤n

Y
(n)
j,u,vΨ(f

(n)
j,u,v)+

∑
1≤u<v≤n

Z
(n)
j,u,vΨ(g

(n)
j,u,v)

)
.
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It follows thus from the Gaussian Poincaré Inequality and (4.6) that

E

{
X

(n)
j,u,u

(
Λ⊗ 1n − Sn

)−1}
= E

{
X

(n)
j,u,uF (Ψ(X

(n)
1 , . . . , X(n)

r ))
}

=
1

n
E

{ d

dt

∣∣∣
t=0
F (Ψ(X

(n)
1 , . . . , X(n)

r ))− tΨ(ej,u,u)
}

=
1

n
E

{(
Λ⊗ 1n − Sn

)−1(
aj ⊗ e(n)

u,u

)(
Λ⊗ 1n − Sn

)−1}
,

and similarly we get that

E

{
Y

(n)
j,u,v ·

(
Λ⊗ 1n − Sn

)−1}
=

1

n
E

{
(Λ⊗ 1n − Sn)−1(aj ⊗ f (n)

u,v )(Λ⊗ 1n − Sn)−1
}

E

{
Z

(n)
j,u,v ·

(
Λ⊗ 1n − Sn

)−1}
=

1

n
E

{
(Λ⊗ 1n − Sn)−1(aj ⊗ g(n)

u,v)(Λ⊗ 1n − Sn)−1
}
.

>From this point, the proof is completed exactly as in the proof of [HT, Lemma 3.5].
�

Lemma 4.1 implies the following analogue of [HT, Theorem 3.6]. The proof is the same
as in [HT] and will therefore be omitted.

4.2 Theorem. (Master equation) Let λ be a matrix in Mm(C) such that Im(λ) is
positive de�nite, and let Λ and Sn be the matrices introduced in (4.2). Then with

Hn(λ) = (idk ⊗ trn)
[
(Λ⊗ 1n − Sn)−1

]
we have the formula

E

{ r∑
i=1

aiHn(λ)aiHn(λ) + (a0 − Λ)Hn(λ) + 1m

}
= 0. (4.7)

We next prove the following analogue of [HT, Theorem 4.5]:

4.3 Theorem. (Master inequality) Let λ be a matrix in Mm(C) such that Im(λ) is
positive de�nite, and let Λ and Sn be the matrices introduced in (4.2). Then with

Hn(λ) = (idk ⊗ trn)
[
(Λ⊗ 1n − Sn)−1

]
and

Gn(λ) = E{Hn(λ)},

we have the estimate∥∥∥ r∑
i=1

aiGn(λ)aiGn(λ) + (a0 − Λ)Gn(λ) + 1k

∥∥∥ ≤ C

n2

(
C1,4 + C2,4

∥∥(Imλ)−1
∥∥4
)
,

where C = k3(
∑r

i=1 ‖ai‖2)2 and C1,4, C2,4 are the constants introduced in Lemma 3.1.
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Proof. Setting Kn(λ) = Hn(λ)−Gn(λ) = Hn(λ)− E{Hn(λ)}, we �nd exactly as in [HT,
proof of Theorem 4.5] that

r∑
i=1

aiGn(λ)aiGn(λ) + (a0 − Λ)Gn(λ) + 1k = −E
{ r∑

i=1

aiKn(λ)aiKn(λ)
}
,

and from this∥∥∥ r∑
i=1

aiGn(λ)aiGn(λ) + (a0 − Λ)Gn(λ) + 1k

∥∥∥ ≤ r∑
i=1

‖ai‖2
E

{
‖Kn(λ)‖2

}

≤
( r∑
i=1

‖ai‖2
) k∑
u,v=1

E

{
|Kn,u,v(λ)|2

}

=
( r∑
i=1

‖ai‖2
) k∑
u,v=1

V

{
Hn,u,v(λ)

}
,

(4.8)

where Kn,u,v(λ) (resp. Hn,u,v(λ)), 1 ≤ u, v ≤ k, are the entries of Kn(λ) (resp. Hn(λ)). As
in [HT, proof of Theorem 4.5] we note that

Hn,u,v(λ) = fn,u,v
(
X

(n)
1 , . . . , X(n)

r

)
,

where fn,u,v : Er,n → C is the function given by

fn,u,v(v1, . . . , vr) = k(trk ⊗ trn)
[
(e(k)
u,v ⊗ 1n)

(
(Λ− a0)⊗ 1n −

∑r
i=1 ai ⊗ vi

)−1]
,

for v = (v1, . . . , vr) ∈ Er,n. For any unit vector w = (w1, . . . , wr) from Er,n, we �nd as in
[HT] that∣∣∣ d

dt

∣∣∣
t=0
fn,u,v(v + tw)

∣∣∣ ≤ 1

n

∥∥∑r
i=1 ai ⊗ wi

∥∥2

2,Trk⊗Trn

∥∥((Λ− a0)⊗ 1n −
∑r

i=1 ai ⊗ vi)−1
∥∥4
,

and here, by arguing as in the proof of [HT, Lemma 4.4],∥∥∑r
i=1 ai ⊗ wi

∥∥2

2,Trk⊗Trn
≤ k

∥∥∑r
i=1 a

∗
i ai
∥∥ ≤ k

∑r
i=1 ‖ai‖2,

so that∣∣∣ d

dt

∣∣∣
t=0
fn,u,v(v + tw)

∣∣∣ ≤ k

n

(∑r
i=1 ‖ai‖2

)∥∥((Λ− a0)⊗ 1n −
∑r

i=1 ai ⊗ vi)−1
∥∥4
.

Consequently,∥∥gradfn,u,v(v)
∥∥2

= max
{∣∣∣ d

dt

∣∣∣
t=0
fn,u,v(v + tw)

∣∣∣2 ∣∣∣ w ∈ Er,n, ‖w‖e = 1
}

≤ k

n

(∑r
i=1 ‖ai‖2

)∥∥((Λ− a0)⊗ 1n −
∑r

i=1 ai ⊗ vi)−1
∥∥4
.
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Combining this with (4.5), it is clear that grad fn,u,v (as well as fn,u,v itself) is polynomially
bounded as a function of rn2 real variables. Hence we may apply the Gaussian Poincaré
Inequality in the form of [HT, Corollary 4.2] as follows:

V

{
Hn,u,v(λ)

}
= V

{
fn,u,v(X

(n)
1 , . . . , X(n)

r )
}
≤ 1

n
E

{∥∥gradfn,u,v(X(n)
1 , . . . , X(n)

r )
∥∥2
}

≤ k

n2

(∑r
i=1 ‖ai‖2

)
E

{∥∥((Λ− a0)⊗ 1n −
∑r

i=1 ai ⊗X
(n)
i

)−1∥∥4
}

≤ k

n2

(∑r
i=1 ‖ai‖2

)
·
(
C1,4 + C2,4

∥∥(Imλ)−1
∥∥4
)
,

(4.9)

where C1,4 and C2,4 are the constants given in Lemma 3.1. Since (4.9) holds for all u, v
in {1, 2, . . . , k}, we �nd in combination with (4.8) that∥∥∥ r∑
i=1

aiGn(λ)aiGn(λ)+(a0−Λ)Gn(λ)+1k

∥∥∥ ≤ k3

n2

( r∑
i=1

‖ai‖2
)2

·
(
C1,4 +C2,4

∥∥(Imλ)−1
∥∥4
)
,

and this is the desired estimate. �

5 Estimation of ‖Gn(λ)−G(λ)‖.

As in the two previous sections, for each n ∈ N we consider stochastically independent
random matrices X

(n)
1 , . . . , X

(n)
r from GUE(n, 1

n
), and we let

Qn = p(X
(n)
1 , . . . , X(n)

r ), (5.1)

where p is a �xed self-adjoint polynomial from Mm(C)⊗C〈X1, . . . , Xr〉. We let An(λ) be
given by (3.2), where λ ∈Mm(C), and Imλ is positive de�nite. Then we may write

An(λ) = Λ⊗ 1n − Sn, (5.2)

where

Λ =

(
λ 0
0 1k−m

)
, (5.3)

and

Sn = a0 ⊗ 1n +
r∑
i=1

ai ⊗X(n)
i (5.4)

for suitable matrices a0, a1, . . . , ar ∈ Mk(C). Note that, according to (3.2), the ai's are
block matrices of the form

ai =



0 a
(1)
i 0 0 · · · 0

0 0 a
(2)
i 0 · · · 0

0 0 0 a
(3)
i · · · 0

...
...

...
. . . . . .

...

0 0 0 · · · 0 a
(d−1)
i

a
(d)
i 0 0 · · · 0 0


, (5.5)
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where a
(j)
i ∈ Mmj ,mj+1

(C), j = 1, . . . , d − 1, and a
(d)
i ∈ Mmd,m1(C). As in the previous

section, let
Hn(λ) = (idk ⊗ trn)[(Λ⊗ 1n − Sn)−1], (5.6)

and let
Gn(λ) = E{Hn(λ)}. (5.7)

Next, let x1, . . . , xr be a semicircular system in a C∗-probability space (A, τ) with τ
faithful, and put

q = p(x1, . . . , xr), (5.8)

s = a0 ⊗ 1A +
r∑
i=1

ai ⊗ xi, (5.9)

and
G(λ) = (idk ⊗ τ)[(Λ⊗ 1A − s)−1]. (5.10)

Note that, according to Lemma 2.3, Λ⊗1A−s is invertible. Finally, for every µ ∈Mk(C),
such that µ⊗ 1A − s is invertible, put

G̃(µ) = (idk ⊗ τ)[(µ⊗ 1A − s)−1]. (5.11)

5.1 Lemma. (i) The R-transform of s w.r.t. amalgamation over Mk(C)⊗ 1A is given
by

R(z) = a0 +
r∑
i=1

aizai, (z ∈Mk(C)).

(ii) If µ ∈Mk(C) is invertible, and ‖µ−1‖ < 1
‖s‖ , then G̃(µ) is well-de�ned and invertible,

and

a0 +
r∑
i=1

aiG̃(µ)ai + G̃(µ)−1 = µ.

(iii) Let µ ∈ Mk(C) be invertible, and let R, T ∈ Mk(C) be block diagonal matrices of
the form

R = diag(r11m1 , r21m2 , . . . , rd1md),

T = diag(t11m1 , t21m2 , . . . , td1md),

where r1, . . . , rd, t1, . . . , td ∈ C \ {0} satisfy

r1t2 = r2t3 = · · · = rd−1td = rdt1 = 1.

If ‖(RµT )−1‖ < 1
‖s‖ , then G̃(µ) is well-de�ned and invertible, and

a0 +
r∑
i=1

aiG̃(µ)ai + G̃(µ)−1 = µ.
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Proof. (i) is essentially due to Lehner [Le]. One just have to exchange a∗i with ai in the
proof of [Le, Prop. 4.1].

In order to prove (ii), note that if ‖µ−1‖ < 1
‖s‖ , then

µ⊗ 1A − s = (µ⊗ 1A)(1k ⊗ 1A − (µ−1 ⊗ 1A)s),

where ‖(µ−1 ⊗ 1A)s‖ < 1. Hence, µ⊗ 1A − s is invertible, and G̃(µ) is well-de�ned. If in
addition ‖µ−1‖ < 1

2‖s‖ , then we get from Neumann's series that

‖G̃(µ)‖ ≤ ‖(µ⊗ 1A − s)−1‖
≤ ‖µ−1‖‖(1k ⊗ 1A − (µ−1 ⊗ 1A)s)−1‖
≤ 2‖µ−1‖. (5.12)

Now, G̃(µ) is the Cauchy transform of s w.r.t. amalgamation over Mk(C)⊗ 1A (cf. [V4],
[Le]). Hence, the maps

z 7→ R(z) + z−1

and
µ 7→ G̃(µ)

are inverses of each other, when z and µ are invertible, and ‖z‖ and‖µ−1‖ are su�ciently

small. Thus, according to (i) and (5.12), there is a δ ∈
(

0, 1
2‖s‖

)
, sucht that when

µ ∈Mk(C) is invertible with ‖µ−1‖ < δ, then{
G̃(µ) is invertible, and

a0 +
∑r

i=1 aiG̃(µ)ai + G̃(µ)−1 = µ.

This statement is equivalent to the identity

G̃(µ)
(
µ− a0 −

r∑
i=1

aiG̃(µ)ai

)
= 1k. (5.13)

It is easily seen that

U =
{
µ ∈ GLk(C) | ‖µ−1‖ < 1

‖s‖

}
is an open, connected set in Mk(C). Hence, by uniqueness of analytic continuation, (5.13)
holds for all µ ∈ U. Therefore, for every µ ∈ U, G̃(µ) is invertible with inverse

G̃(µ)−1 = µ− a0 −
r∑
i=1

aiG̃(µ)ai.

This proves (ii).

Finally, to prove (iii), observe that by (5.5) and (5.12),

RaiT = ai, (i = 0, 1, . . . , r). (5.14)
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If ‖(RµT )−1‖ < 1
‖s‖ , then we get from (ii) that G̃(RµT ) is well-de�ned and invertible, and

a0 +
r∑
i=1

aiG̃(RµT )ai + G̃(RµT )−1 = RµT. (5.15)

According to (5.14), (R⊗ 1A)s(T ⊗ 1A) = s. Hence,

RµT ⊗ 1A − s = (R⊗ 1A)(µ⊗ 1A − s)(T ⊗ 1A).

Then, since RµT ⊗ 1A − s is invertible, so is µ⊗ 1A − s, and

(µ⊗ 1A − s)−1 = (T ⊗ 1A)(RµT ⊗ 1A − s)−1(R⊗ 1A).

It follows that G̃(µ) is well-de�ned, and

G̃(µ) = TG̃(RµT )R

is invertible with inverse
G̃(µ)−1 = R−1G̃(RµT )−1T−1.

Taking (5.14) and (5.15) into account, we �nd that

a0 +
r∑
i=1

aiG̃(µ)ai + G̃(µ)−1

= R−1
(
Ra0T +

r∑
i=1

(RaiT )G̃(RµT )(RaiT ) + G̃(RµT )−1
)
T−1

= R−1
(
a0

r∑
i=1

aiG̃(RµT )ai + G̃(RµT )−1
)
T−1

= R−1RµTT−1

= µ.

This proves (iii). �

In the following we let

O = {λ ∈Mm(C) | Imλ is positive definite},

and as before, for λ ∈ O we put

Λ =

(
λ 0
0 1k−m

)
.

5.2 Lemma. There is a constant C ′, depending only on s = a0⊗1A +
∑r

i=1 ai⊗xi, such
that:
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(i) For all λ ∈ O,
‖(Λ⊗ 1A − s)−1‖ ≤ C ′(1 + ‖(Imλ)−1‖).

Moreover, G(λ) is invertible, and

a0 +
r∑
i=1

aiG(λ)ai +G(λ)−1 = Λ.

(ii) Let λ ∈ O, and suppose that µ ∈Mk(C) satis�es

‖µ− Λ‖ < 1

2C ′(1 + ‖(Imλ)−1‖)
.

Then µ⊗ 1A − s is invertible, and

‖(µ⊗ 1A − s)−1‖ < 2C ′(1 + ‖(Imλ)−1‖).

Moreover, G̃(µ) is invertible, and

a0 +
r∑
i=1

aiG̃(µ)ai + G̃(µ)−1 = µ.

Proof. (i) With C ′1,1 and C ′2,1 as in Lemma 3.2, put C ′ = max{C ′1,1, C ′2,1}. Then by
Lemma 3.2,

‖(Λ⊗ 1n − s)−1‖ ≤ C ′(1 + ‖(Imλ)−1‖).

Put
O′ = {λ ∈ O | ‖λ−1‖ < min{1, ‖s‖−d}}.

Then O′ is a non-empty, open subset of O. At �rst we will show that the remaining part
of (i) holds for all λ ∈ O′. Let λ ∈ O′, and put

α = ‖λ−1‖
1
d < min

{
1,

1

‖s‖

}
.

Then with
(r1, . . . , rd) = (αd−1, αd−2, . . . , α, 1)

and
(t1, . . . , td) = (1, α1−d, α2−d, . . . , α−1),

put
R = diag(r11m1 , . . . , rd1md)

and
T = diag(t11m1 , . . . , td1md).

Then r1t2 = r2t3 = · · · = rd−1td = rdt1 = 1, and

RΛT =

(
αd−1λ 0

0 α−11k−m

)
,
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whence

‖(RΛT )−1‖ = max{αd−1‖λ‖, α} = α <
1

‖s‖
.

Therefore, by Lemma 5.1, G(λ) = G̃(Λ) is invertible and satis�es

a0 +
r∑
i=1

aiG(λ)ai +G(λ)−1 = Λ.

It follows that

G(λ)
(

Λ− a0 −
r∑
i=1

aiG(λ)ai

)
= 1k (5.16)

holds for all λ ∈ O′, but then, since O is open and connected, it follows from uniqueness
of analytic continuation that (5.16) holds for all λ ∈ O. That is, for every such λ, G(λ) is
invertible and satis�es

a0 +
r∑
i=1

aiG(λ)ai +G(λ)−1 = Λ.

(ii) Suppose that µ ∈Mk(C) and

‖(µ⊗ 1A − s)−1‖ < 2C ′(1 + ‖(Imλ)−1‖).

According to (i), ‖(Λ ⊗ 1A − s)−1‖ ≤ C ′(1 + ‖Imλ‖−1). Put x = Λ ⊗ 1A − s and
y = µ⊗ 1A − s. Then

‖x−1(x− y)‖ < 1

2
.

Therefore, y = x(1− x−1(x− y)) is invertible, and by Neumann's series,

‖y−1‖ ≤
∥∥∥ ∞∑
n=0

(x−1(x− y))n
∥∥∥‖x−1‖ ≤ 2‖x−1‖.

Hence,
‖(µ⊗ 1A − s)−1‖ ≤ 2C ′(1 + ‖(Imλ)−1‖).

Put

O′′ =
⋃
λ∈O

{
µ ∈Mk(C) | ‖µ− Λ‖ < 1

2C ′(1 + ‖(Imλ)−1‖)

}
.

Since O is connected, O′′ is a connected, open subset of Mk(C). In order to prove (ii), we
must show that

G̃(µ)
(
µ− a0 −

r∑
i=1

aiG̃(µ)ai

)
= 1k (5.17)

holds for all µ ∈ O′′. Again, by uniqness of analytic continuation, it su�ces to show
that (5.17) holds for all µ in a non-empty open subset of O′′. Choose λ ∈ O such that
‖λ−1‖ < min{1, ‖s‖−d}, and de�ne block matrices R, T ∈ Mk(C) as in the proof of
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(i). Then ‖(RΛT )−1‖ < 1
‖s‖ . Since x 7→ x−1 is continuous on GLk(C), we may choose

δ ∈
(

0, 1
2C′(1+‖(Imλ)−1‖)

)
, such that if ‖µ− Λ‖ < δ, then µ is invertible, and

‖(RµT )−1‖ < 1

‖s‖
.

Put
O′′′ = {µ ∈Mk(C) | ‖µ− Λ‖ < δ}.

Since δ < 1
2C′(1+‖(Imλ)−1‖) , O

′′′ ⊆ O′′. Moreover, we get from Lemma 5.1 that when µ ∈ O′′′,

then G̃(µ) is invertible, and

G̃(µ)−1 = µ− a0 −
r∑
i=1

aiG̃(µ)ai.

That is, (5.17) holds for all µ ∈ O′′′ and therefore for all µ ∈ O′′. �

Let λ ∈ O, and put Λ =

(
λ 0
0 1k−m

)
. According to Theorem 4.3, there is a constant

C1 ≥ 0 such that∥∥∥(Λ− a0 −
r∑
i=1

aiGn(λ)ai

)
Gn(λ)− 1k

∥∥∥ ≤ C1

n2
(1 + ‖(Imλ)−1‖4). (5.18)

Put

Bn(λ) = Λ− a0 −
r∑
i=1

aiGn(λ)ai, (λ ∈ O).

Then, by Neumann's Lemma and (5.18), if

C1

n2
(1 + ‖(Imλ)−1‖4) <

1

2
, (5.19)

then Bn(λ)Gn(λ) is invertible with ‖(Bn(λ)Gn(λ))−1‖ ≤ 2. Hence Gn(λ) is invertible too
with

‖Gn(λ)−1‖ ≤ ‖(Bn(λ)Gn(λ))−1‖‖Bn(λ)‖
≤ 2‖Bn(λ)‖

≤ 2
(
‖λ‖+ 1 + ‖a0‖+

r∑
i=1

‖ai‖2‖Gn(λ)‖
)
.

(5.20)

Taking Lemma 3.1 into account we �nd that for some constant C2 ≥ 0,

‖Gn(λ)−1‖ ≤ C2(‖λ‖+ 1)(1 + ‖(Imλ)−1‖). (5.21)
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By (5.18), if λ ∈ O satis�es (5.19), then

‖Λ− a0 −
r∑
i=1

aiGn(λ)ai −Gn(λ)−1‖ ≤ C1

n2
(1 + ‖(Imλ)−1‖4)‖Gn(λ)−1‖

≤ C1

n2
(1 + ‖(Imλ)−1‖4)C2(‖λ‖+ 1)(1 + ‖(Imλ)−1‖)

≤ C3

n2
(1 + ‖λ‖)(1 + ‖(Imλ)−1‖5)

(5.22)

for some constant C3 ≥ 0. For λ ∈ O ful�lling (5.19) de�ne Λn(λ) ∈Mk(C) by

Λn(λ) = a0 +
r∑
i=1

aiGn(λ)ai +Gn(λ)−1. (5.23)

Note that
Λ− Λn(λ) = Bn(λ)−Gn(λ)−1, (5.24)

and therefore, by (5.22),

‖Λ− Λn(λ)‖ ≤ C3

n2
(1 + ‖λ‖)(1 + ‖(Imλ)−1‖5). (5.25)

Let C ′ be as in Lemma 5.2. Then, if also

2C ′C3

n2
(1 + ‖λ‖)(1 + ‖(Imλ)−1‖5)(1 + ‖(Imλ)−1‖) < 1, (5.26)

then

‖Λn(λ)− Λ‖ < 1

2C ′(1 + ‖(Imλ)−1‖)
. (5.27)

Hence, by Lemma 5.2, G̃(Λn(λ)) is well-de�ned and invertible and satis�es

a0 +
r∑
i=1

aiG̃(Λn(λ))ai + G̃(Λn(λ)−1 = Λn(λ). (5.28)

Put
C4 = max{2C1, 2C

′C3}
and

Vn =
{
λ ∈ O

∣∣∣ C4

n2
(1 + ‖λ‖)(1 + ‖(Imλ)−1‖5)(1 + ‖(Imλ)−1‖) < 1

}
. (5.29)

Then for all λ ∈ Vn, (5.21) and (5.26) hold, and hence also (5.27) and (5.28) hold. Observe
that the set

Un =
{

it1m

∣∣∣ t > 0,
C4

n2
(1 + t)(1 + t−5)(1 + t−1) < 1

}
is contained in Vn, and that the function

f : t 7→ (1 + t)(1 + t−5)(1 + t−1) (5.30)
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is strictly convex on ]0,∞[ and satis�es

f(t)→∞, t→ 0+,

f(t)→∞, t→∞.
(5.31)

Therefore the set

In =
{
t > 0

∣∣∣ C4

n2
(1 + t)(1 + t−5)(1 + t−1) < 1

}
(5.32)

is either empty or an open, bounded interval. In particular, Un is arc-wise connected.

For λ ∈ O put ε(λ) = ‖(Imλ)−1‖−1. Then, as in [HT, Proof of Proposition 5.6], we �nd
that iε(λ)1m ∈ Un for all λ ∈ Vn, and that the line segment connecting λ and iε(λ)1m is
contained in Vn. Hence, either Vn = ∅ or Vn is connected.

For λ ∈ Vn we get from (5.23) and (5.28) that
r∑
i=1

aiGn(λ)ai +Gn(λ)−1 =
r∑
i=1

aiG̃(Λn(λ))ai + G̃(Λn(λ))−1. (5.33)

In the following we will show that (5.33) implies that Gn(λ) = G̃(Λn(λ)) for all λ ∈ Vn.

5.3 Lemma. Let z, w ∈ GLk(C), and suppose that
r∑
i=1

aizai + z−1 =
r∑
i=1

aiwai + w−1. (5.34)

If there exists T ∈ GLk(C), such that
r∑
i=1

‖wai‖‖TaizT−1‖ < 1, (5.35)

then z = w.

Proof. By (5.34),

w
( r∑
i=1

aizai + z−1
)
z = w

( r∑
i=1

aiwai + w−1
)
z,

i.e.
r∑
i=1

wai(z − w)aiz = z − w.

Therefore,
r∑
i=1

wai(z − w)T−1(TaizT
−1) = (z − w)T−1,

which implies that( r∑
i=1

‖wai‖‖TaizT−1‖
)
‖(z − w)T−1‖ ≥ ‖(z − w)T−1‖.

Hence, if (5.35) holds, then )‖(z − w)T−1‖ = 0, and thus z = w. �
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5.4 Lemma. For all n ∈ N and all λ ∈ O with ‖(Imλ)−1‖ ≤ 1 there exists T ∈ GLk(C),
depending only on ‖(Imλ)−1‖, and a constant C5 > 0, depending only on a0, . . . , ar, such
that

‖TaiGn(λ)T−1‖ ≤ C5‖(Imλ)−1‖
1
d , (i = 0, 1, . . . , r).

Proof. With the same notation as in the proof of Lemma 3.1,

‖Gn(λ)‖ ≤ E{‖An(λ)−1‖}
≤ E{‖Cn‖}+ E{‖B(1)

n ‖‖B(2)
n ‖}‖(Imλ)−1‖,

where
C1,1 := sup

n∈N
E{‖Cn‖} <∞,

and
C2,1 := sup

n∈N
E{‖B(1)

n ‖‖B(2)
n ‖} <∞.

In the same way we get for T ∈ GLk(C) that

‖TaiGn(λ)T−1‖ ≤ E{‖TaiCnT−1‖}+ E{‖TaiB(1)
n ‖‖B(2)

n T−1‖}‖(Imλ)−1‖
≤ E{‖TaiCnT−1‖}+ C2,1‖ai‖‖T‖‖T−1‖‖(Imλ)−1‖. (5.36)

By Lemma 2.3, Cn has at most 1
2
d(d− 1) non-zero block entries and takes the form

Cn =



0 0 0 0 0 · · · 0
0 ∗ ∗ ∗ ∗ · · · ∗
0 0 ∗ ∗ ∗ · · · ∗
0 0 0 ∗ ∗ · · · ∗
...

...
...

...
. . . . . .

...
0 0 0 0 · · · ∗ ∗
0 0 0 0 · · · 0 ∗


.

Combining this with (5.5), we �nd that aiCn is a strictly upper triangular d × d block
matrix. Let β ≥ 1, and put

T = diag(β1m1 , β
21m2 , . . . , β

d1md). (5.37)

Then TaiCnT
−1 is obtained from aiCn by multiplying the (µ, ν)'th block entry by βµ−ν .

Since aiCn is strictly upper triangular,

‖TaiCnT−1‖ ≤
∑
µ<ν

‖[TaiCnT−1]µ,ν‖

=
∑
µ<ν

βµ−ν‖[aiCn]µ,ν‖

≤ β−1
∑
µ<ν

‖[aiCn]µ,ν‖,
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where [x]µ,ν denotes the (µ, ν)'th block entry of a matrix x ∈Mk(C). Hence,

‖TaiCnT−1‖ ≤ d2

β
‖aiCn‖

Since E{‖Cn‖} ≤ C1,1, we get from (5.36) that

‖TaiGn(λ)T−1‖ ≤
(d2

β
C1,1 + C2,1‖T‖‖T−1‖‖(Imλ)−1‖

)
‖ai‖ (5.38)

Moreover, since β ≥ 1, we have that ‖T‖ = βd and ‖T−1‖ = β−1. Now, if ‖(Imλ)−1‖ ≤ 1,

put β = ‖(Imλ)−1‖− 1
d ≥ 1. Then by (5.38),

‖TaiGn(λ)T−1‖ ≤ ‖ai‖
β

(C1,1d
2 + C2,1).

Put C5 =
(∑r

i=1 ‖ai‖
)

(C1,1d
2 + C2,1). Then

‖TaiGn(λ)T−1‖ ≤ C5

β
= C5‖(Imλ)−1‖

1
d . �

5.5 Lemma. There is a positive integer N , such that for all n ≥ N ,

Gn(λ) = G̃(Λn(λ)), (λ ∈ Vn).

Proof. Let λ ∈ Vn, and put z = Gn(λ) and w = G̃(Λn(λ)). According to (5.33),

r∑
i=1

aizai + z−1 =
r∑
i=1

aiwai + w−1.

Moreover, by Lemma 5.2 (ii) and (5.27) we have that

‖w‖ ≤ ‖(Λn(λ)⊗ 1A − s)−1‖
≤ 2C ′(1 + ‖(Imλ)−1‖).

Thus, if ‖(Imλ)−1‖ < 1, then ‖w‖ < 4C ′. Moreover, by Lemma 5.4 there exist a constant
C5 and T ∈ GLk(C), such that

‖TaizT−1‖ ≤ C5‖(Imλ)−1‖
1
d .

Hence
r∑
i=1

‖wai‖‖TaizT−1‖ < 4C ′C5

( r∑
i=1

‖ai‖
)
‖(Imλ)−1‖

1
d .

Put

ε = min
{(

4C ′C5

r∑
i=1

‖ai‖
)−d

, 1
}
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and
V ′n = {λ ∈ Vn | ‖(Imλ)−1‖ < ε}. (5.39)

Then for all λ ∈ V ′n,
r∑
i=1

‖wai‖‖TaizT−1‖ < 1,

and therefore, by Lemma 5.4, z = w. That is, for all λ ∈ V ′n,

Gn(λ) = G̃(Λn(λ)). (5.40)

Recall from the proof of Lemma 5.2 that

Un =
{

it1m

∣∣∣ t > 0,
C4

n2
(1 + t)(1 + t−5)(1 + t−1) < 1

}
is a subset of Vn. Hence, if

C4

n2

(
1 +

ε

2

)(
1 +

(ε
2

)−5)(
1 +

(ε
2

)−1)
< 1, (5.41)

then i ε
2
1m ∈ V ′n. Choose N ∈ N, such that

N2 > C4

(
1 +

ε

2

)(
1 +

(ε
2

)−5)(
1 +

(ε
2

)−1)
.

Then for all n ≥ N , (5.41) holds, and hence V ′n is a non-empty open subset of Vn. Since Vn
is open, and λ 7→ Gn(λ)− G̃(Λn(λ)) is analytic, (5.40) holds for all λ ∈ Vn when n ≥ N .

�

5.6 Theorem. There exist N ∈ N and a constant C6 > 0, both depending only on
a0, . . . , ar, such that for all λ ∈ O and all n ≥ N ,

‖Gn(λ)−G(λ)‖ ≤ C6

n2
(1 + ‖λ‖)(1 + ‖(Imλ)−1‖7). (5.42)

Proof. Let N be as in Lemma 5.5. Then for n ≥ N and λ ∈ Vn,

‖Gn(λ)−G(λ)‖ = ‖G̃(Λn(λ))−G(λ)‖
≤ ‖(Λn(λ)⊗ 1A − s)−1 − (Λ⊗ 1A − s)−1‖
= ‖(Λn(λ)⊗ 1A − s)−1(Λ− Λn(λ))(Λ⊗ 1A − s)−1‖
≤ ‖(Λn(λ)⊗ 1A − s)−1‖‖Λ− Λn(λ)‖‖(Λ⊗ 1A − s)−1‖.

Since (5.27) holds for all λ ∈ Vn, we get from Lemma 5.2 that

‖Gn(λ)−G(λ)‖ ≤ 2(C ′)2(1 + ‖(Imλ)−1‖)2‖Λ− Λn(λ)‖.

Hence, by (5.25), for all λ ∈ Vn,

‖Gn(λ)−G(λ)‖ ≤ 2(C ′)2C3

n2
(1 + ‖λ‖)(1 + ‖(Imλ)−1‖)2(1 + ‖(Imλ)−1‖5)

≤ C
(1)
6

n2
(1 + ‖λ‖)(1 + ‖(Imλ)−1‖7)
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for some constant C
(1)
6 > 0. Next, if λ ∈ O \ Vn, i.e.

C4

n2
(1 + ‖λ‖)(1 + ‖(Imλ)−1‖5)(1 + ‖(Imλ)−1‖) ≥ 1,

then

‖Gn(λ)−G(λ)‖ ≤ C4

n2
(1 + ‖λ‖)(1 + ‖(Imλ)−1‖5)(1 + ‖(Imλ)−1‖)(‖Gn(λ)‖+ ‖G(λ)‖).

(5.43)
Put C ′′ = max{C1,1, C2,1, C

′
1,1, C

′
2,1}, where C1,1, C2,1, C

′
1,1, C

′
2,1 refer to the constants from

Lemma 3.1 and Lemma 3.2. Then

‖Gn(λ)‖+ ‖G(λ)‖ ≤ 2C ′′(1 + ‖(Imλ)−1‖),

and hence, by (5.43), there is a constant C
(2)
6 > 0, such that for all λ ∈ O \ Vn,

‖Gn(λ)−G(λ)‖ ≤ C
(2)
6

n2
(1 + ‖λ‖)(1 + ‖(Imλ)−1‖7).

Thus, with C6 = max{C(1)
6 , C

(2)
6 }, (5.42) holds. �

6 The spectrum of Qn.

As in the previous we consider a �xed polynomial p ∈ (Mm(C) ⊗ C〈X1, . . . , Xr〉)sa and
de�ne Qn and q by (3.1) and (3.9), respectively. For λ ∈ C with Imλ > 0 put

g(λ) = (trm ⊗ τ)[(λ1m ⊗ 1A − q)−1], (6.1)

gn(λ) = E{(trm ⊗ trn)[(λ1m ⊗ 1n −Qn)−1]}. (6.2)

By application of Proposition 2.3, we �nd that with E = 1m ⊕ 0k−m ∈Mk(C),

g(λ) =
k

m
trk(EG(λ1m)E),

and

gn(λ) =
k

m
trk(EGn(λ1m)E).

Hence for every n ≥ N ′,

|gn(λ)− g(λ)| ≤ k

m

C7

n2
(1 + ‖λ‖)(1 + ‖(Imλ)−1‖7). (6.3)

6.1 Theorem. For every φ ∈ C∞c (R,R),

E{(trm ⊗ trn)φ(Qn)} = (trm ⊗ τ)φ(q) +O
( 1

n2

)
.
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Proof. This follows from (6.3) by minor modi�cations of [HT, Proof of Theorem 6.2].
�

We are now going to prove

6.2 Theorem. Let φ ∈ C∞(R,R) such that φ is constant outside a compact subset of
R, and suppose

supp(φ) ∩ σ(q) = ∅.

Then

E{(trm ⊗ trn)φ(Qn)} = O(n−2), (6.4)

V{(trm ⊗ trn)φ(Qn)} = O(n−4), (6.5)

and
P (|(trm ⊗ trn)φ(Qn)| < n−

4
3 , eventually as n→∞) = 1. (6.6)

In the proof of this theorem we shall need:

6.3 Proposition. Let m, r ∈ N, let p ∈ Mm(C) ⊗ C〈X1, . . . , Xr〉 with p = p∗, and

for each n ∈ N, let X(n)
1 , . . . , X

(n)
r be stocastically independent random matrices from

SGRM(n, 1
n
). Then for every compactly supported C1-function φ : R → C there is a

constant C ≥ 0 such that

V{(trm ⊗ trn)φ(Qn)} ≤ C

n2
E

{
(trm ⊗ trn)[|φ′|2(Qn)] ·

(
1 +

r∑
j=1

‖X(n)
j ‖d−1

)2}
, (6.7)

where
Qn = p(X

(n)
1 , . . . , X(n)

r ),

and d = deg(p).

Proof. Choose monomials mj ∈ C〈X1, . . . , Xr〉, j = 1, . . . , N , and choose αj ∈ Mm(C),
j = 0, . . . , N , such that

p = α0 ⊗ 1 +
N∑
j=1

αj ⊗mj. (6.8)

Consider a �xed n ∈ N, and let Er,n be the real vector space (Mn(C)sa)
r equipped with

the Euclidean norm ‖ · ‖e (cf. [HT, Section 3]). Then de�ne f : Er,n → C by

f(v1, . . . , vr) = (trm ⊗ trn)[φ(p(v1, . . . , vr))], (v1, . . . , vr ∈Mn(C)sa).

According to [HT, (4.4)],

V{(trm ⊗ trn)[φ(Qn)]} ≤ 1

n
E{‖(gradf)(X

(n)
1 , . . . , X(n)

r )‖2
e}. (6.9)
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Now, let v = (v1, . . . , vr) ∈ Er,n, and let w = (w1, . . . , wr) ∈ Er,n with ‖w‖e = 1. As in
[HT, Proof of Proposition 4.7] we �nd that∣∣∣ d

dt

∣∣∣
t=0
f(v + tw)

∣∣∣2 ≤ 1

m2n2
‖φ′(p(v))‖2

2,Trm⊗Trn

∥∥∥ d

dt

∣∣∣
t=0
p(v + tw)

∥∥∥2

2,Trm⊗Trn
, (6.10)

where
‖φ′(p(v))‖2

2,Trm⊗Trn = mn · (trm ⊗ trn)[|φ′|2(p(v))].

According to (6.8),

∥∥∥ d

dt

∣∣∣
t=0
p(v + tw)

∥∥∥
2,Trm⊗Trn

≤
N∑
j=1

∥∥∥αj ⊗ d

dt

∣∣∣
t=0
mj(v + tw)

∥∥∥
2,Trm⊗Trn

=
N∑
j=1

‖αj‖2,Trm

∥∥∥ d

dt

∣∣∣
t=0
mj(v + tw)

∥∥∥
2,Trn

.

Making use of the fact that ‖wj‖2
2,Trn ≤ 1, j = 1, . . . , r, we �nd that with dj = deg(mj),

∥∥∥ d

dt

∣∣∣
t=0
mj(v + tw)

∥∥∥
2,Trn

≤ dj · max
1≤i≤r

‖vi‖dj−1 ≤ d ·
(

1 +
r∑
i=1

‖vi‖d−1
)
,

and it follows that∥∥∥ d

dt

∣∣∣
t=0
p(v + tw)

∥∥∥
2,Trm⊗Trn

≤ d ·
(

1 +
r∑
i=1

‖vi‖d−1
)( N∑

j=1

‖αj‖2,Trm

)
.

Then by insertion into (6.10),∣∣∣ d

dt

∣∣∣
t=0
f(v + tw)

∣∣∣2 ≤ 1

mn
(trm ⊗ trn)[|φ′|2(p(v))]·

d2 ·
(

1 +
r∑
i=1

‖vi‖d−1
)2( N∑

j=1

‖αj‖2,Trm

)2

.

Since w was arbitrary this implies that with

C =
1

m
· d2 ·

( N∑
j=1

‖αj‖2,Trm

)2

,

‖(gradf)(v)‖2
e ≤

C

n
(trm ⊗ trn)[|φ′|2(p(v))] ·

(
1 +

r∑
i=1

‖vi‖d−1
)2

.
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Then by (6.9),

V{(trm ⊗ trn)[φ(Qn)]} ≤ C

n2
E

{
(trm ⊗ trn)[|φ′|2(Qn)] ·

(
1 +

r∑
i=1

‖X(n)
i ‖d−1

)2}
,

as desired. �

6.4 Proposition. There exist universal constants γ(k) ≥ 0, k ∈ N, such that for every
n ∈ N and for every Xn ∈ SGRM(n, 1

n
),

E{1(‖Xn‖>3) · ‖Xn‖k} ≤ γ(k)ne−
n
2 . (6.11)

Proof. Let k, n ∈ N and Xn ∈ SGRM(n, 1
n
). De�ne F : [0,∞[→ [0, 1] by

F (t) = P (‖Xn‖ ≤ t), (t ≥ 0).

Recall from [S, Proof of Lemma 6.4] that for all ε > 0 one has that

1− F (2 + ε) ≤ 2n exp
(
− nε2

2

)
. (6.12)

Integrating by parts as in [Fe, Lemma V.6.1] we get that

E{1(‖Xn‖>3) · ‖Xn‖k} =

∫ ∞
3

tkdF (t)

= 3k(1− F (3)) + k

∫ ∞
3

tk−1(1− F (t))dt.

According to (6.12), 1− F (3) ≤ 2ne−
n
2 and∫ ∞

3

tk−1(1− F (t))dt =

∫ ∞
0

(3 + t)k−1(1− F (3 + t))dt

≤ 2n

∫ ∞
0

(3 + t)k−1 exp
(
− n

2
(1 + t)2

)
dt

= 2ne−
n
2

∫ ∞
0

(3 + t)k−1 exp
(
− n

2
(2t+ t2)

)
dt.

Hence (6.11) holds with

γ(k) = 2 · 3k + 2

∫ ∞
0

(3 + t)k−1 exp
(
− n

2
(2t+ t2)

)
dt <∞. �

Proof of Theorem 6.2 . (6.4) follows from Theorem 6.1 as in [HT, Proof of Lemma 6.3].
To prove (6.5), note that by Proposition 6.3,

V{(trm⊗ trn)φ(Qn)} ≤ C

n2
E

{
(trm⊗ trn)[|φ′|2(Qn)] · (r+1)

(
1+

r∑
i=1

‖X(n)
i ‖2d−2

)}
. (6.13)
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Let Ωi = {ω ∈ Ω | ‖X(n)
i (ω)‖ ≤ 3}, i = 1, . . . , r. Then by Proposition 6.4,

E{(trm ⊗ trn)[|φ′|2(Qn)]‖X(n)
i ‖2d−2}

≤
∫

Ωi

32d−2(trm ⊗ trn)[|φ′|2(Qn)]dP +

∫
Ω\Ωi
‖φ′‖2

∞‖X
(n)
i ‖2d−2dP

≤ 32d−2
E{(trm ⊗ trn)[|φ′|2(Qn)]}+ ‖φ′‖2

∞‖γ(2d− 2)ne−
n
2 .

Applying (6.4) to |φ′|2 we get that

E{(trm ⊗ trn)[|φ′|2(Qn)]} = O(n−2),

and hence by (6.13),

V{(trm ⊗ trn)φ(Qn)} = O
(
n−4 +

1

n
e−

n
2

)
= O(n−4),

which proves (6.5).

Finally, (6.6) follows from (6.4) and (6.5) as in [HT, Proof of Lemma 6.3]. �

As in [HT, proof of Theorem 6.4], (6.6) implies the following:

6.5 Theorem. For any ε > 0 and for almost all ω ∈ Ω,

σ(Qn(ω)) ⊆ σ(q) + ]− ε, ε[,

eventually as n→∞.

7 No projections in C∗red(Fr) � a new proof.

7.1 Theorem. ([V3], [PV]). Let m, r ∈ N, let x1, . . . , xr be a semicircular system in
(A, τ), and let e be a projection in Mm(C∗(1A, x1, . . . , xr)). Then (Trm ⊗ τ)e ∈ N0. In
particular, C∗red(Fr) contains no projections but the trivial ones, i.e. P(C∗red(Fr)) = {0,1}.

Proof. Choose p ∈Mm(C)⊗ C〈X1, . . . , Xr〉, such that p = p∗ and

‖e− p(x1, . . . , xr)‖ <
1

8
.

Put q = p(x1, . . . , xr). By [Da, Proposition 2.1] the Hausdor� distance between the
spectra σ(e) and σ(q) is at most ‖e− q‖. Hence σ(q) ⊆ ]− 1

8
, 1

8
[∪ ]7

8
, 9

8
[.

Choose φ ∈ C∞c (R) such that 0 ≤ φ ≤ 1, φ|]− 1
4
, 1
4

[ = 0 and φ|] 3
4
, 5
4

[ = 1. φ(q) is a projection,
and

‖φ(q)− q‖ < 1

8
.
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Consequently,

‖φ(q)− e‖ < 1

4
< 1,

implying that φ(q) is equivalent to e. In particular,

(Trm ⊗ τ)e = (Trm ⊗ τ)φ(q).

For each n ∈ N, let X(n)
1 , . . . , X

(n)
r be stochastically independent random matrices from

SGRM(n, 1
n
), and put

Qn = p(X
(n)
1 , . . . , X(n)

r ).

We know from Theorem 6.5 that there is a P -null set N ⊆ Ω such that for all ω ∈ Ω \N ,

σ(Qn(ω)) ⊆ σ(q) +
]
−1

8
, 1

8

[
⊆
]
−1

4
, 1

4

[
∪
]

3
4
, 5

4

[
holds eventually as n→∞.

In particular, when ω ∈ Ω \N , there is an N(ω) ∈ N such that φ(Qn(ω)) is a projection
for all n ≥ N(ω), and therefore

(Trm ⊗ Trn)φ(Qn(ω)) ∈ Z. (7.1)

Put
Zn(ω) = (trm ⊗ trn)φ(Qn(ω))− (trm ⊗ τ)φ(q), (ω ∈ Ω).

According to Theorem 6.1, E{Zn} = O
(

1
n2

)
. Moreover, since φ′ vanishes in a neighbour-

hood of σ(q), we get, as in the proof of Theorem 6.2, that

V{Zm} = V{(trm ⊗ trn)φ(Qn)} = O
( 1

n4

)
.

As previously noted this implies that

P (|Zn| < n−
4
3 , eventually as n→∞) = 1.

Hence, we may assume that

(Trm ⊗ Trn)φ(Qn(ω)) = n(Trm ⊗ τ)φ(q) +O(n−
1
3 ), (7.2)

holds for almost all ω ∈ Ω \N as well.

Now choose ω ∈ Ω \ N and n0 ∈ N such that (7.1) and (7.2) hold when n ≥ n0. Take
C ≥ 0 such that for all n ∈ N,

|(Trm ⊗ Trn)φ(Qn(ω))− n(Trm ⊗ τ)φ(q)| ≤ C · n−
1
3 .
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Then

dist(n(Trm ⊗ τ)φ(q),Z) ≤ C · n−
1
3 ,

dist((n+ 1)(Trm ⊗ τ)φ(q),Z) ≤ C · (n+ 1)−
1
3 ,

and hence by subtraction,

dist((Trm ⊗ τ)φ(q),Z) ≤ C(n−
1
3 + (n+ 1)−

1
3 )

for all n ≥ n0. This implies that (Trm ⊗ τ)φ(q) ∈ Z.
The last statement of Theorem 7.1 follows from this and the fact that C∗red(Fr) has a
unital trace-preserving embedding into A0 = C∗(1A, x1 . . . , xr) (cf. [HT, Lemma 8.1]).

�

7.2 Remark. The last statement of Theorem 7.1 was originally proved in [PV] by ap-
plication of methods from K-theory, and also the �rst statement of Theorem 7.1 may be
obtained using K-theory. Indeed, in [V3] it was shown that K0(A0) = Z [1A]0, where
A0 = C∗(1A, x1, . . . , xr).

8 Gaps in the spectrum of q.

As in the previous sections, consider a semicircular system x1, . . . , xr in (A, τ). Take
p ∈Mm(C)⊗ C〈X1, . . . , Xr〉, such that p = p∗ and put

q = p(x1, . . . , xr).

The following is an easy consequence of Theorem 7.1:

8.1 Proposition. σ(q) is a union of at most m disjoint connected sets, each of which is
a compact interval or a one-point set.

Proof. R \σ(q) is a union of disjoint open intervals. If R \σ(q) had more than m+ 1 con-
nected components, one could choose m+1 non-zero orthogonal projections e1, . . . , em+1 ∈
Mm(C∗(1A, x1, . . . , xr)). Since

(Trm ⊗ τ)ej ∈ {1, . . . ,m}, (1 ≤ j ≤ m+ 1),

we would get that

m = (Trm ⊗ τ)(1m ⊗ 1) ≥
m+1∑
j=1

(Trm ⊗ τ)ej ≥ m+ 1

� a contradiction. Consequently, R \ σ(q) has at most m+ 1 connected components, and
σ(q) is a union of at most m disjoint non-empty compact intervals. �
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Now, for each n ∈ N, let X(n)
1 , . . . , X

(n)
r be stochastically independent random matrices

from SGRM(n, 1
n
), and put

Qn = p(X
(n)
1 , . . . , X(n)

r ).

8.2 Theorem. Let ε0 denote the smallest distance between disjoint connected com-
ponents of σ(q), let J be a connected component of σ(q), let 0 < ε < 1

3
ε0, and let

µq ∈ Prob(R) denote the distribution of q w.r.t. trm ⊗ τ . Then µq(J) = k
m

for some
k ∈ {1, . . . ,m}, and for almost all ω ∈ Ω, the number of eigenvalues of Qn(ω) in J+]−ε, ε[
is k · n, eventually as n→∞.

Proof. Take φ ∈ C∞c (R) such that 0 ≤ φ ≤ 1, φ|J+]−ε,ε[ = 1, and φ|R\(J+]−2ε,2ε[) = 0. Then,
φ(q) ∈Mm(C∗(1A, x1, . . . , xr)), and hence, by Theorem 7.1,

µq(J) = (trm ⊗ τ)1J(q) = (trm ⊗ τ)φ(q) =
k

m

for some k ∈ {1, . . . ,m}.
As in the proof of Theorem 7.1 there is a P -null set N ⊂ Ω such that for all ω ∈ Ω \N ,

σ(Qn(ω)) ⊆ σ(q) + ]− ε, ε[,

eventually as n→∞, and

(trm ⊗ trn)φ(Qn(ω)) =
k

m
+O(n−

4
3 ). (8.1)

In particular, for all ω ∈ Ω \N there exists N(ω) ∈ N such that φ(Qn(ω)) is a projection
for all n ≥ N(ω).

For ω ∈ Ω \N and n ≥ N(ω) take kn(ω) ∈ {0, . . . ,m · n} such that

(trm ⊗ trn)φ(Qn(ω)) =
kn(ω)

m · n
.

Note that kn(ω) is the number of eigenvalues of Qn(ω) in J+]− ε, ε[. (8.1) implies that

kn(ω) = k · n+O(n−
1
3 ),

and hence kn(ω) = k · n for n su�ciently big. �

9 The real and symplectic cases.

In the sections 9 and 10 we will generalize the results of section 4-6 to Gaussian random
matrices with real or sympletic entries. The case of polynomials of degree 1 was treated
by the second named author in [S].
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The sympletic numbers H can be expressed as

H = R+ jR+ kR+ lR,

where j2 = k2 = l2 = 1 and

jk = −kj = l, kl = −lk = j, lj = −jl = k.

H can be realized as a subring of M2(C) with unit

(
1 0
0 1

)
by putting

j =

(
i 0
0 −i

)
, k =

(
0 1
−1 0

)
, and l =

(
0 i
i 0

)
.

By this realization of H, the complecti�cation of H becomes HC = H+iH = M2(C).

Following the notation of [S] we will consider the following random matrix ensembles:

(i) GRMR(n, σ2) is the set of random matrices Y : Ω → Mn(R) ful�lling that the
entries of Y , Yuv, 1 ≤ u, v ≤ n, constitute a set of n2 i.i.d. random variables with
distribution N(0, σ2).

(ii) GRMH(n, σ2) is the set of random matrices Y →Mn(H) of the form

Y = 1⊗ Y (1) + j ⊗ Y (2) + k ⊗ Y (3) + l ⊗ Y (4)

where Y (1), Y (2), Y (3), Y (4) are stocastically independent randommatrices from GRM R(n, σ
2

4
).

(iii) The ensemble GOE(n, σ2) (resp. GOE∗(n, σ2)) from [S] can be described as the set
of selfadjoint random matrices, which have the same distribution as

1√
2

(Y + Y ∗), (resp.
1

i
√

2
(Y − Y ∗))

where Y ∈ GRMR(n, σ2).

(iv) The ensemble GSE(n, σ2) (resp. GSE∗(n, σ2)) from [S] can be described as the set
of selfadjoint random matrices having the same distribution as

1√
2

(Y + Y ∗), (resp.
1

i
√

2
(Y − Y ∗))

where Y ∈ GRMH(n, σ2).

We shall prove the formulas (1.2), (1.4), (1.5), (1.6) for selfadjoint polynomials of arbitrary
degree in r + s stocastically independent selfadjoint random matrices

X
(n)
1 , . . . , X

(n)
r+s, (r, s ≥ 0, r + s ≥ 1),
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where in the real case

X
(n)
1 , . . . , X(n)

r ∈ GOE(n, 1
n
), X

(n)
r+1, . . . , X

(n)
r+s ∈ GOE∗(n, 1

n
), (9.1)

and in the symplectic case

X
(n)
1 , . . . , X(n)

r ∈ GSE(n, , 1
n
), X

(n)
r+1, . . . , X

(n)
r+s ∈ GSE∗(n, , 1

n
). (9.2)

The symplectic case of (1.2), (1.4), (1.5) and (1.6) can easily be reduced to the real case
by use of the methods from [S, Section 7]. Therefore, in the following we will only consider
the real case.

Let r, s ∈ N0 with r+s ≥ 1, and for each n ∈ N, let X(n)
1 , . . . , X

(n)
r+s be independent random

matrices such that X
(n)
1 , . . . , X

(n)
r ∈ GOE(n, 1

n
) and X

(n)
r+1, . . . , X

(n)
r+s ∈ GOE∗(n, 1

n
). As

in the previous sections, we let p ∈ (Mm(C) ⊗ C〈X1, . . . , Xr+s〉)sa and de�ne random
matrices (Qn)∞n=1 by

Qn(ω) = p(X
(n)
1 (ω), . . . , X

(n)
r+s(ω)), (ω ∈ Ω). (9.3)

With d = deg(p) we may choose m1, . . . ,md+1 ∈ N with m = m1 = md+1 and polynomials
uj ∈Mmj ,mj+1

(C)⊗C〈X1, . . . , Xr+s〉 of �rst degree, j = 1, . . . , d, such that p = u1u2 · · ·ud.
For each n ∈ N de�ne random matrices u

(n)
j , j = 1, . . . , d, by

u
(n)
j (ω) = uj(X

(n)
1 (ω), . . . , X

(n)
r+s(ω)), (ω ∈ Ω).

Since Qn(ω) is self-adjoint, λ⊗1n−Qn(ω) is invertible for every λ ∈Mm(C) with Imλ > 0.
Then, according to Proposition 2.3, the random matrix

An(λ) =



λ⊗ 1n −u(n)
1 0 0 · · · 0

0 1m2 ⊗ 1n −u(n)
2 0 · · · 0

0 0 1m3 ⊗ 1n −u(n)
3 · · · 0

...
...

...
. . . . . .

...

0 0 0 · · · 1md−1
⊗ 1n −u(n)

d−1

−u(n)
d 0 0 · · · 0 1md ⊗ 1n


(9.4)

is (point-wise) invertible in Mk(C), where k =
∑d

i=1 mi.

Choose a0, . . . , ar+s ∈Mk(C) taking the form

ai =


0 ai1 0 · · · 0
0 0 a

i2 · · · 0
...

...
. . . . . .

...
0 0 · · · 0 aid−1

aid 0 · · · 0 0

 ,

such that with

Sn = a0 ⊗ 1n +
r+s∑
i=1

ai ⊗X(n)
i ,

42



and Λ = λ⊕ 1k−m we have:
An(λ) = Λ⊗ 1n − Sn.

As in section 6 put

O = {λ ∈Mm(C) | Imλ is positive de�nite}

For λ ∈ O we put
Hn(λ) = (idk ⊗ trn)[(Λ⊗ 1n − Sn)−1] (9.5)

and
Gn(λ) = E{Hn(λ)}. (9.6)

By [S, Lemma 6.4], Lemma 3.1 also holds in the real case, possibly with new constants
C1,p and C2,p. Hence, Gn(λ) is well-de�ned and it is easy to check, that λ 7→ Gn(λ) is an
analytic map from O to Mk(C).

As in [S], we will let A−t denote the transpose of the inverse of an invertible matrix A.

9.1 Theorem. There is a constant C̃1 ≥ 0, such that for every n ∈ N and for all λ ∈ O,∥∥∥∥ r+s∑
j=1

ajGn(λ)aiGn(λ) + (a0 − Λ)Gn(λ) + 1k +
1

n
Rn(λ)

∥∥∥∥ ≤ C̃1

n2
(1 + ‖(Imλ)−1‖4), (9.7)

where

Rn(λ) =
r+s∑
j=1

k∑
u,v=1

εjaje
(k)
uv E{(idk⊗trn)[(Λ⊗1n−Sn)−t(e(k)

uv aj⊗1n)(Λ⊗1n−Sn)−1]}, (9.8)

εj = 1, 1 ≤ j ≤ r, and εj = −1, r + 1 ≤ j ≤ r + s.

Proof. We may assume that

X
(n)
j =

1√
2

(Y
(n)
j + Y

(n)∗

j ), (1 ≤ j ≤ r),

X
(n)
j =

1

i
√

2
(Y

(n)
j − Y (n)∗

j ), (r + 1 ≤ j ≤ r + s),

where Y
(n)

1 , . . . , Y
(n)
r+s are r+s stocastically independent randommatrices from GRM R(n, 1

n
).

Then

Sn = a0 ⊗ 1n +
r+s∑
j=1

(bj ⊗ Y (n)
j + cj ⊗ Y (n)∗

j ),

where
bj = cj = 1√

2
aj, (1 ≤ j ≤ r),

bj = −cj = 1
i
√

2
aj, (r + 1 ≤ j ≤ r + s).

(9.9)
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Following now the proof of [S, Theorem 2.1] we get that

E

{
(a0 − λ)Hn(λ) +

r+s∑
i=1

(bjHn(λ)cjHn(λ) + cjHn(λ)bjHn(λ)) + 1k
}

= − 1

n
Rn(λ), (9.10)

where

Rn(λ) =
r+s∑
j=1

k∑
u,v=1

bje
(k)
uv E{(idm ⊗ trn)(λ⊗ 1n − Sn)−t(e(k)

uv bj ⊗ 1n)(λ⊗ 1n − Sn)−1}

+
r+s∑
j=1

k∑
u,v=1

cje
(k)
uv E{(idm ⊗ trn)(λ⊗ 1n − Sn)−t(e(k)

uv cj ⊗ 1n)(λ⊗ 1n − Sn)−1}

Hence by (9.10),

E{((a0 − λ)Hn(λ) +
r+s∑
j=1

ajHn(λ)ajHn(λ) + 1k} = − 1

n
Rn(λ) (9.11)

where

Rn(λ) =
r+s∑
j=1

k∑
u,v=1

εjaje
(k)
uv E{(idm⊗trn)(λ⊗1n−Sn)−t(e(k)

uv aj⊗1n)(λ⊗1n−Sn)−1} (9.12)

and where εj = 1, 1 ≤ j ≤ r and εj = −1, r+ 1 ≤ j ≤ r+ s. Now, combining the method
of proof from [S, proof of Theorem 2.4] with the proof of Theorem 4.3 of this paper, one
�nds that∥∥∥∥ r+s∑

j=1

ajGn(λ)ajGn(λ) + (a0 − λ)Gn(λ) + 1k +
1

n
Rn(λ)

∥∥∥∥ ≤ C̃

n2
(C1,4 + C2,4‖(Imλ)−1‖4)

for some constant C̃ > 0 depending only on a0, . . . , ar. Hence (9.7) holds with C̃1 =

C̃ · (C1,4 + C2,4). �

9.2 Corollary. There is a constant C̃2 ≥ 0, such that for every λ ∈ O,∥∥∥∥ r+s∑
j=1

ajGn(λ)ajGn(λ) + (a0 − Λ)Gn(λ) + 1k

∥∥∥∥ ≤ C̃2

n
(1 + ‖(Imλ)−1‖4).

Proof. By (9.12) and Lemma 3.1 (for the real case)

‖Rn(λ)‖ ≤ k2

( r+s∑
j=1

‖aj‖2

)
E{‖(Λ⊗ 1n − Sn)−1‖2}

≤ k2

( r+s∑
j=1

‖aj‖2

)
(C2,1 + C2,2‖(Imλ)−1‖2)

≤ C ′′(1 + ‖(Imλ)−1‖2)

(9.13)
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for a constant C ′′ depending only on a0, . . . , ar. Hence by Theorem 9.1,∥∥∥∥ r+s∑
i=1

aiGn(λ)aiGn(λ) + (a0 − Λ)Gn(λ) + 1k‖ ≤
C ′′

n
(1 + ‖(Imλ)−1‖2) +

C̃1

n2
(1 + ‖(Imλ)−1‖4)

≤ C̃2

n
(1 + ‖(Imλ)−1‖4)

for a constant C̃2 ≥ 0. �

Let (x1, . . . , xr+s) be a semicircular system in a C∗-probability space (A, τ), where τ is a
faithfull state on A. Put

s = a0 ⊗ 1A +
r+s∑
j=1

aj ⊗ xj, (9.14)

G(λ) = (idk ⊗ τ)[(Λ⊗ 1A − s)−1], (λ ∈ O), (9.15)

and put
G̃(µ) = (idk ⊗ τ)[(µ⊗ 1A − s)−1] (9.16)

for all µ ∈Mk(C) with µ⊗ 1A − s is invertible.

9.3 Theorem. There is an N ∈ N and a constant C̃3 both depending only on a0, . . . , ar
such that for all λ ∈ O

‖Gn(λ)−G(λ)‖ ≤ C̃3

n
(1 + ‖λ‖)(1 + ‖(Imλ)−1‖7),

where G(λ) is de�nded by (9.15).

Proof. This follows from Corollary 9.2 exactly as Theorem 5.6 followed from Theorem 4.3.
One just has to replace n2 by n in the proofs in Section 5. �

9.4 Remark. From the proof of Theorem 9.3, i.e. from section 5 with n2 replaced by n
(cf. the formulas (5.18) through (5.33) and Lemma 5.5), it follows that there exist positive
constants C2, C3 and C4 such that when Vn denotes the set

Vn =
{
λ ∈ O

∣∣∣ C4

n2
(1 + ‖λ‖)(1 + ‖(Imλ)−1‖5)(1 + ‖(Imλ)−1‖) < 1

}
, (9.17)

then for all λ ∈ Vn, Gn(λ) is invertible and the following estimate holds:

‖Gn(λ)−1‖ ≤ C2(1 + ‖λ‖)(1 + ‖(Imλ)−1‖). (9.18)

Moreover, if one de�nes Λn(λ) by

Λn(λ) = a0 +
r+s∑
j=1

ajGn(λ)aj +Gn(λ)−1, (9.19)
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then for λ ∈ Vn,
‖Λn(λ)− Λ‖ ≤ C3

n2
(1 + ‖λ‖)(1 + ‖(Imλ)−1‖5), (9.20)

and

‖Λn(λ)− Λ‖ ≤ 1

2C ′(1 + ‖(Imλ)−1‖)
, (9.21)

where C ′ is the constant from Lemma 5.2. Finally, G̃(Λn(λ)) is well-de�ned, and

G̃(Λn(λ)) = Gn(λ), (λ ∈ Vn). (9.22)

As above, consider a semicircular system x1, . . . , xr+s in a C∗-probability space (A, τ),
where τ is a faithful state. It is no loss of generality to assume that

A = C∗(x1, . . . , xr+s).

Note that the random matrices X
(n)
1 , . . . , X

(n)
r ∈ GOE(n, 1

n
) are symmetric, whereas

X
(n)
r+1, . . . , X

(n)
r+s ∈ GOE∗(n, 1

n
) are skew-symmetric. This is the reason for the following

choice of �transposition� in A and Mk(A).

9.5 Lemma. (1) There is a unique bounded linear map a 7→ at of A onto itself such
that

(a) xtj = xj, (1 ≤ j ≤ r),

(b) xtj = −xj, (r + 1 ≤ j ≤ r + s),

(c) (ab)t = btat, (a, b ∈ A).

Moreover, (at)t = a and ‖at‖ = ‖a‖ for all a ∈ A.

(2) De�ne a map a→ at of Mk(A) onto itself by

((auv)
k
u,v=1)t = (atvu)

k
u,v=1

Then (ab)t = btat, (a, b ∈ Mk(A)). Moreover, (at)t = a and ‖at‖ = ‖a‖ for all
a ∈Mk(A).

Proof. (1) By the proof of [S, lemma 5.2(ii)] the is τ -prepreserving ∗-automorphism ψ of
A = C∗(x1, . . . , xr,1), such that

ψ(xj) = xj, 1 ≤ j ≤ r
ψ(xj) = −xj, r + 1 ≤ j ≤ r + s

Moreover, by [S, lemma 5.2(i)], there is a canjugate linear ∗-isomorphism ϕ of A such that
τ ◦ ϕ = τ̄ and ϕ(xj) = xj, 1 ≤ j ≤ r + s. Put now

at = ψ ◦ ϕ(a∗), a ∈ A
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Then it is clear, that a → at satis�es all the conditions of (1). Also a → at is unique by
boundedness and (a), (b), (c).
(2) It is elementary to check that the map on Mk(A) de�ned in (2) is involutive and
reverses the product. Hence it is a ∗-isomorphism of Mk(A) on the opposite algebra
Mk(A)op, in particular it is an isometri. �

For an invertible element a ∈ Mk(A) we let a−t denote the operator (a−1)t = (at)−1.
In analogy with (9.8) we can now put

R(λ) =
r+s∑
j=1

εjaje
(k)
uv (idk ⊗ τ)[(Λ⊗ 1A − s)−t(e(k)

uv aj ⊗ 1A)(Λ⊗ 1A − s)−1] (9.23)

Note that by lemma 3.2

‖R(λ)‖ ≤ C̃ ′′(1 + ‖(Imλ)−1‖2), λ ∈ O (9.24)

for a constant C̃ ′′ ≥ 0.

9.6 Theorem. There is a constant C̃4 ≥ 0 such that for all λ ∈ O and all n ∈ N,

‖Rn(λ)−R(λ)‖ ≤ C̃4

n
(1 + ‖(Imλ)−1‖14).

Before proving Theorem 9.6 we will show how the main result of this section (Theorem 9.7
below) can be derived from Theorem 9.6 and the previous results of this section.

As in [S, section 4] we put

L(λ) = (idm ⊗ τ)[(λ⊗ 1A − s)−t(R(λ)G(λ)−1 ⊗ 1A)(λ⊗ 1A − s)−1].

9.7 Theorem. There is a constant C̃5 ≥ 0 such that for all λ ∈ O and all n ∈ N,∥∥∥Gn(λ)−G(λ) +
1

n
L(λ)

∥∥∥ ≤ C̃5

n2
(1 + ‖λ‖)(1 + ‖(Imλ)−1‖17).

for all λ ∈ O and all n ∈ N.

Proof. The proof follows the proof of [S, Theorem 4.4]. As in Remark 9.4 we put

Vn =
{
λ ∈ O

∣∣∣ C4

n2
(1 + ‖λ‖)(1 + ‖(Imλ)−1‖5)(1 + ‖(Imλ)−1‖) < 1

}
,

and we let Λn(λ) be given by (9.19). Then by Theorem 9.1 and (9.18), for all λ ∈ Λn,∥∥∥Λn(λ)− Λ +
1

n
Rn(λ)Gn(λ)−1

∥∥∥
=

∥∥∥( r+s∑
j=1

ajGn(λ)ajGn(λ) + (a0 − Λ)Gn(λ) + 1k +
1

n
Rn(λ)

)
Gn(λ)−1

∥∥∥
≤ C̃5

n2
(1 + ‖λ‖)(1 + ‖(Imλ)−1‖6), (9.25)
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for some constant C̃5 ≥ 0. By Lemma 5.2,

‖G(λ)‖ ≤ C ′(1 + ‖(Imλ)−1‖, (λ ∈ O) (9.26)

Moreover, by Lemma 5.2, G(λ) is invertible and

G(λ)−1 = Λ− a0 −
r+s∑
i=1

aiG(λ)ai. (9.27)

Hence, by (9.26),

‖G(λ)−1‖ ≤ C̃ ′(1 + ‖λ‖)(1 + ‖(Imλ)−1‖, (λ ∈ O) (9.28)

for some constant C̃ ′ ≥ 0. Applying Theorem 9.3, (9.18) and (9.28), we have for λ ∈ Vn,

‖Gn(λ)−1 −G(λ)−1‖ = ‖Gn(λ)−1(G(λ)−Gn(λ))G(λ)−1‖

≤ C̃6

n
(1 + ‖λ‖)3(1 + ‖(Imλ)−1‖9)

for a constant C̃6 ≥ 0. Combining this with Theorem 9.6 and (9.13), we now have

‖Rn(λ)Gn(λ)−1 −R(λ)G(λ)−1‖ ≤ ‖Rn(λ)‖‖Gn(λ)−1 −G(λ)−1‖+ ‖Rn(λ)−R(λ)‖‖G(λ)−1‖

≤ C̃7

n
(1 + ‖λ‖)3(1 + ‖(Imλ)−1‖15)

for a constant C̃7 ≥ 0. Hence by(9.25),∥∥∥Λn(λ)− Λ +
1

n
R(λ)G(λ)−1

∥∥∥ ≤ C̃8

n2
(1 + ‖λ‖)3(1 + ‖(Imλ)−1‖15) (9.29)

for a constant C̃8 ≥ 0. By lemma 5.2 and (9.21), we have for λ ∈ Vn,

‖(Λ⊗ 1A − s)−1‖ ≤ C ′(1 + ‖(Imλ)−1‖), (9.30)

‖(Λn(λ)⊗ 1A − s)−1‖ ≤ 2C ′(1 + ‖(Imλ)−1‖). (9.31)

Proceeding as in [S, (4.24) and (4.25)], one now gets, using (9.20), (9.22), (9.24) and the
above estimates, that

‖Gn(λ)−G(λ)− 1

n
L(λ)‖ ≤ 1

n2
(1 + ‖λ‖)3P1(‖Imλ‖−1)

for a polynomical P1 of degree 17. Finally, if λ ∈ O\Vn, then one obtains exactly as in [S,
proof of Theorem 4.4] that∥∥∥Gn(λ)−G(λ)− 1

n
L(λ)

∥∥∥ ≤ (1 + ‖λ‖)2P2(‖(Imλ)−1‖)

for a polynomial P2 of degree 13. Put P = P1 + P2. Then P is of degree 17, and∥∥∥Gn(λ)−G(λ)− 1

n
L(λ)

∥∥∥ ≤ (1 + ‖λ‖)3P (‖(Imλ)−1‖)

for all λ ∈ O. This proves Theorem 9.7. �

We now return to the proof of Theorem 9.6. The proof will be devided into a series of
lemmas. The �rst lemma is a simpel but very useful observation:
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9.8 Lemma. Let A be a unital algebra, and let x, z ∈ GL(A) and y ∈ A. Then(
x y
0 z

)
is invertible in M2(A) with inverse(

x−1 −x−1yz−1

0 z−1

)
.

Let λ ∈ O and x ∈Mk(C) and as usual put

Λ =

(
λ 0
0 1k−m

)
.

Moreover, we put

πn(λ, x) =

(
Λt ⊗ 1n − Stn x⊗ 1n

0 Λ⊗ 1n − Sn

)
, (9.32)

Hn(λ, x) = (id2k ⊗ trn)[πn(λ, x)−1], (9.33)

Gn(λ, x) = E{Hn(λ, x)}, (9.34)

and

π(λ, x) =

(
Λt ⊗ 1A − st x⊗ 1A

0 Λ⊗ 1A − s

)
, (9.35)

G(λ, x) = (id2k ⊗ τ)[π(λ, x)−1] (9.36)

Finally, we put

ŝ =

(
st 0
0 s

)
and

G̃(µ) = (id2k ⊗ τ)((µ⊗ 1A − ŝ)−1) (9.37)

whenever µ⊗ 1A − ŝ is invertible in M2k(A). Note that

G(λ, x) = G̃

(
Λt x
0 Λ

)
. (9.38)

The idea is now to estimate ‖Gn(λ, x) − G(λ, x)‖ by the methods of section 5 (with n2

replaced by n). The estimate we obtain in Lemma 9.15 below combined with Lemma 9.8
will then complete the proof of Theorem 9.6.

9.9 Lemma. (i) The R-transform of ŝ with respect to amalgamation over M2k(C) is

R̂(z) = â0 +
r+s∑
i=1

âizâi, z ∈M2k(C)

where

âi =

(
ati 0
0 ai

)
, (i = 0, . . . , r + s).
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(ii) Let µ ∈ M2k(C). If µ is invertible and ‖µ−1‖ < 1
‖S‖ , then G̃(µ) is well-de�ned and

invertible. Moreover,

â0 +
r+s∑
i=1

â0G̃(µ)âi + G̃(µ)−1 = µ.

(iii) Let µ ∈M2k(C). If µ is invertible and if∥∥∥∥∥
((

T t 0
0 R

)
µ

(
Rt 0
0 T

))−1
∥∥∥∥∥ < 1

‖s‖
,

for some choice of block diagonal matrices R and T of the form

R = diag(r11m1 , r21m2 , . . . , rd1mk),

T = diag(t11m1 , t21m2 , . . . , td1mk),

where r1, . . . , rd, t1, . . . , td ∈ C\{0} satisfy

r1t2 = r2t3 = . . . = rd−1td = rdt1 = 1,

then G̃(µ) is well-de�ned and invertible and satis�es

â0 +
r+s∑
i=1

âiG̃(µ)âi + G̃(µ)−1 = µ.

Proof. Observe, that with R and T as in (iii),(
T t 0
0 R

)
âi

(
Rt 0
0 T

)
=

(
(RaiT )t 0

0 RaiT

)
= âi

for i = 0, . . . , r + s because RaiT = ai by (5.14). The rest of the proof of Lemma 9.10 is
a straightforward generalization of the proof of Lemma 5.1. �

Let B denote the open unitball in Mk(C) i.e.

B = {x ∈Mk(C) | ‖x‖ < 1}.

9.10 Lemma. There is a constant C̃ depending only on a0, . . . , ar+s, such that:

(i) For all λ ∈ O and x ∈ B

‖π(λ, x)−1‖ ≤ C̃(1 + ‖(Imλ)−2‖).

Moreover, for all such λ and x, G(λ, x) is invertible, and

â0 +
r∑
i=1

âiG(λ, x)âi +G(λ, x)−1 =

(
Λt x
0 Λ

)
.
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(ii) Let (λ, x) ∈ O×B and assume that µ ∈M2k(C) satis�es∥∥∥∥µ− (Λt x
0 Λ

)∥∥∥∥ < 1

2Ĉ(1 + ‖(Imλ)−2‖)
.

Then µ⊗ 1A − ŝ is invertible, and

‖(µ⊗ 1A − ŝ)−1‖ < 2Ĉ(1 + ‖(Imλ)−2‖).

Moreover, G̃(µ) is invertible and

â0 +
r+s∑
i=1

âiG̃(µ)âi + G̃(µ)−1 = µ.

Proof. Since a 7→ at is an isometry of Mk(A) and since (a−1)t = (at)−1, when a is
invertible, we have that

‖(Λt ⊗ 1A − st)−1‖ = ‖(Λ⊗ 1A − s)−1‖.

Hence for λ ∈ O and x ∈ B, we get by Lemma 9.8 and Lemma 3.2 that

‖π(λ, x)−1‖ =

∥∥∥∥∥
(

Λt ⊗ 1A − st x⊗ 1A

0 Λ⊗ 1A − s

)−1
∥∥∥∥∥

≤ ‖(Λ⊗ 1A − s)−1‖+ ‖(Λ⊗ 1A − s)−1‖2‖x‖
≤ C ′1,1 + C ′2,1‖(Imλ)−1‖+ C ′2,1 + C ′2,2‖(Imλ)−1‖2

≤ Ĉ(1 + ‖(Imλ−1‖2)

for a constant C̃ depending only on C ′i,j, i, j = 1, 2. Put

O′ = {λ ∈ O | ‖λ−1‖ < min{1, (2‖s‖)−d}},

and for a �xed λ ∈ O′ put

α = ‖λ−1‖
1
d < min

{
1,

1

2‖s‖

}
.

Next, let
(r1, . . . , rd) = (αd−1, αd−2, . . . , α, 1),

(t1, . . . , td) = (1, α1−d, α2−d, . . . , α−1),

and
R = diag(r11m1 , . . . , rd1md),

T = diag(t11m1 , . . . , td1md).

Then, as in the proof of Lemma 5.2, we get that

‖(RΛT )−1‖ = α <
1

2‖s‖
.
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Hence by Lemma 9.8, we have for x ∈ B that∥∥∥∥∥
((

T t 0
0 R

)(
Λt x
0 Λ

)(
Rt 0
0 T

))−1
∥∥∥∥∥ =

∥∥∥∥∥
(

(RΛT )t T t × T
0 RΛT

)−1
∥∥∥∥∥

≤ ‖(RΛT )−1‖+ ‖(RΛT )−1‖2‖T‖2‖x‖

≤ 1

2‖s‖
+
‖T‖2‖x‖

4‖s‖2
.

Moreover, ‖T‖ = α1−d ≤ α−d = ‖λ−1‖−1. Thus, if ‖x‖ < 2‖s‖ ‖λ−1‖2, then∥∥∥∥∥
(
T t 0
0 R

)(
Λt x
0 Λ

)(
Rt 0
0 T

)−1
∥∥∥∥∥ < 1

‖s‖
,

so by (9.38) and Lemma 9.10 (iii),

â0 +
r∑
i=1

âiG(λ, x)âi +G(λ, x)−1 =

(
Λt x
0 Λ

)
. (9.39)

Since
{(λ, x) ∈ O′ ×B | ‖x‖ < 2‖s‖ ‖λ−1‖2}

is a non-empty open subset of O× B, we can use uniqueness of analytic continuation as
in the proof of Lemma 5.2 and obtain that G(λ, x) is invertible for all (x, λ) ∈ O × B
and that these all satisfy (9.39). This proves (i). The proof of (ii) is a straightforward
generalization of the proof of Lemma 5.2 (ii). �

For λ ∈ O and x ∈ Mk(C) we let πn(λ, x), Hn(λ, x) and Gn(λ, x) be given by (9.32),
(9.33) and (9.34), respectively. Moreover, we put

Rn(λ, x) =
r+s∑
i=1

2k∑
u,u=1

âie
(2k)
uv E{(id2k ⊗ trn)[πn(x, λ)−t(e(2k)

uv âi ⊗ 1n)πn(x, λ)−1]}. (9.40)

9.11 Lemma. There is a constant Ĉ1 ≥ 0 only depending on a0, . . . , ar+s, such that for
all λ ∈ O and all x ∈ B,

‖
r+s∑
i=1

âiGn(λ, x)âiGn(λ, x) +
(
â0 −

(
Λt x
0 Λ

))
Gn(λ, x) + 1n

)
+

1

n
Rn(λ, x)‖

≤ Ĉ1

n2
(1 + ‖(Imλ)−1‖8)

.

(9.41)

Proof. This is a fairly straightforward generalization of the proof of Theorem 9.1. The
master equation (9.11) now becomes

E

{
r+s∑
i=1

âiHn(λ, x)âiHn(λ, x) +

(
â0 −

(
Λt x
0 Λ

))
Hn(λ, x) + 1n

}
= − 1

n
Rn(λ, x). (9.42)
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Since ‖x‖ < 1, we get from Lemma 9.8 and Lemma 3.1 that

E{‖πn(λ, x)−1‖p} = E

{∥∥∥∥∥
(

Λt ⊗ 1n − stn x⊗ 1n
0 Λ⊗ 1n − sn

)−1
∥∥∥∥∥
p}

≤ E{(‖Λ⊗ 1n − sn‖+ ‖Λ⊗ 1n − sn‖2)p}
≤ 2pE{‖Λ⊗ 1n − sn‖p + ‖Λ⊗ 1n − sn‖2p}
≤ 2p(C1,p + C2,p‖(Imλ)−1‖p + C1,2p + C2,2p‖(Imλ)−1‖2p)

≤ C ′p(1 + ‖(Imλ)−1‖2p),

(9.43)

for a constant C ′p which only depends on the constants Ci,j, i = 1, 2, j = p, 2p. Ap-
plying now (9.43) for p = 4, Lemma 9.11 follows from (9.42) exactly as in the proof of
Theorem 9.1. �

9.12 Corollary. There is a constant Ĉ2 ≥ 0, such that for all λ ∈ O and all x ∈ B,∥∥∥∥∥
r+s∑
i=1

âiGn(λ, x)âiGn(λ, x) +

(
â0 −

(
Λt x
0 Λ

))
Gn(λ, x) + 1n

∥∥∥∥∥ ≤ Ĉ2

n
(1 + ‖(Imλ)−1‖8).

Proof. By (9.40) and (9.43) (for p = 2), we have that

‖Rn(λ, x)‖ ≤ Ĉ ′′(1 + ‖(Imλ)−1‖4),

for some constant Ĉ ′′ ≥ 0. The corollary now follows immediately from Lemma 9.12 (cf.
the proof of Corollary 9.2). �

Note that by (9.33), (9.34) and (9.43),

‖Gn(λ, x)‖ ≤ C ′p(1 + ‖(Imλ)−1‖2), ((λ, x) ∈ O×B), (9.44)

and by (9.36) and Lemma 9.11 (i),

‖G(λ, x)‖ ≤ Ĉ(1 + ‖(Imλ)−1‖2), ((λ, x) ∈ O×B). (9.45)

Proceeding now as in (5.18)-(5.23) with n2 replaced by n (see also Remark 9.4), one �nds
that after suitable changes of the exponents, that there exists positive constants C2, C3, C4

and C6, such that when V̂n denotes the set

V̂n =
{
λ ∈ O | C4

n
(1 + ‖λ‖)(1 + ‖(Imλ)−1‖10)(1 + ‖(Imλ)−1‖2) < 1

}
, (9.46)

then for (λ, x) ∈ Vn ×B, Gn(λ, x) is invertible and

‖Gn(λ)−1‖ ≤ C2(1 + ‖λ‖)(1 + ‖(Imλ)−1‖2). (9.47)

Moreover, if one de�nes Λn(λ, x) by

Λn(λ, x) = â0 +
r+s∑
i=1

âiGn(λ, x)âi +Gn(λ, x)−1, (9.48)
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then for (λ, x) ∈ V̂n × O,∥∥∥∥Λn(λ, x)−
(

Λt x
0 Λ

)∥∥∥∥ ≤ C3

n2
(1 + ‖λ‖)(1 + ‖(Imλ)−1‖10), (9.49)

and ∥∥∥∥Λn(λ, x)−
(

Λt x
0 Λ

)∥∥∥∥ ≤ 1

2Ĉ(1 + ‖(Imλ)−1‖2)
, (9.50)

where Ĉ is the constant from Lemma 9.10 (ii). Hence by Lemma 9.10 (ii), Λn(λ, x)⊗1A−ŝ
is invertible, and

‖(Λn(λ, x)⊗ 1A − ŝ)−1‖ ≤ 2Ĉ(1 + ‖(Imλ)−1‖2). (9.51)

Moreover, G̃(Λn(λ, x)) is well-de�ned, invertible and

â0 +
r+s∑
i=1

âiG̃(Λn(λ, x))âi + G̃(Λn(λ, x))−1 = Λn(λ, x). (9.52)

Recall that for λ ∈ O,

Gn(λ) = E{(idk ⊗ trn)((Λ⊗ 1n − sn)−1)}.

9.13 Lemma. There is a constant C5 ≥ 0, independent of λ and n, such that when λ ∈ O

and ‖(Imλ)−1‖ ≤ 1, there exist R, S ∈ GL(k,C), such that

‖RGn(λ)aiR
−1‖ ≤ C5‖(Imλ)−1‖

1
d , (9.53)

and
‖SaiGn(λ)S−1‖ ≤ C5‖(Imλ)−1‖

1
d , (9.54)

for n ∈ N and 1 ≤ i ≤ r + s.

Proof. Lemma 3.1 holds in the real case too (possibly with change of constants). Therefore
Lemma 5.4 also holds in the real case, which proves (9.54). Moreover, by the proof of
Lemma 5.4, the matrix S given by

S = diag(β1m1 , β
21m2 , . . . , β

d1md), (9.55)

where β = ‖(Imλ)−1‖ 1
d ≥ 1, satis�es (9.54). As in the proof of Lemma 3.1, write

(λ⊗ 1n − Sn)−1 = Cn +B(1)
n (λ⊗ 1n −Qn)−1B(2)

n .

Then by (5.5) and the positions of the non-zero entries of Cn, we get, that Gn(λ)ai is a
d× d block matrix of the form

Gn(λ)ai =


0 0 · · · · · · 0
∗ 0 ∗ · · · ∗
∗ 0 0

. . .
...

...
...

...
. . . ∗

∗ 0 0 · · · 0

 .
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Let
R = diag(βd1m1 , β1m2 , β

21m5 , . . . , β
d−11md), (9.56)

where as before β = ‖(Imλ)−1‖− 1
d . Then the map Gn(λ)ai → RGn(λ)aiR

−1 multiplies
the upper diagonal entries of [Gn(λ)ai]uv, 2 ≤ u < v ≤ d, by βu−v and it multiplies the
entries [Gn(λ)ai]u1, 2 ≤ u ≤ d by βu−1−d. Thus,

‖[RGn(λ)aiR
−1]uv‖ ≤ β−1‖[Gn(λ)ai]uv‖

for all u, v ∈ {1, . . . , d}. The rest of the proof of (9.53) is now a simple modi�cation of
the proof of Lemma 5.4. �

9.14 Lemma. There is a positive integer N , such that for all n ≥ N ,

G̃(Λn(λ, x)) = Gn(λ, x), (λ ∈ V̂n, x ∈ B).

Proof. Let (λ, x) ∈ V̂n ×B, and at �rst assume that ‖(Imλ)−1‖ ≤ 1. Put

z = Gn(λ, x) and w = G̃(Λn(λ, x)). (9.57)

By (9.48) and (9.52), z and w are invertible, and

r+s∑
i=1

âizâi + z−1 =
r+s∑
i=1

âiwâi + w−1. (9.58)

Put

T =

(
R−t 0

0 S

)
, (9.59)

where R, S ∈ GL(k,C) are the matrices from Lemma 9.13 given by (9.55) and (9.56). We
will show that if ‖(Imλ)−1‖ and ‖x‖ are su�ciently small, then

r+s∑
i=1

‖wâi‖‖T âizT−1‖ < 1, (9.60)

and thus, by the proof of Lemma 5.3, it follows, that z = w.

By Lemma 9.8 we have for λ ∈ O and x ∈ B that

Gn(λ, x) = E

{
(id2k ⊗ trn)

[(
λt ⊗ 1n − Stn x⊗ 1n

0 λ⊗ 1n − Sn

)−1
]}

=

(
Gn(λ)t Kn(λ, x)

0 Gn(λ)

) , (9.61)

where

Kn(λ, x) = −E{(idk ⊗ trn)[(λt ⊗ 1n − stn)−1(x⊗ 1n)(λ⊗ 1n − sn)−1]}. (9.62)
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With R, S and T as above we have that

T âiGn(λ, x)T−1 =

(
(RGn(λ)aiR

−1)t R−tatiKn(λ, x)S−1

0 SaiGn(λ)S−1

)
.

Hence, by Lemma 9.13,

‖T âiGn(λ, x)T−1‖ ≤ C5‖(Imλ)−1‖
1
d + ‖R−1‖‖atiKn(λ, x)‖‖S−1‖.

By (9.55) and (9.56), ‖R−1‖ = ‖S−1‖ = 1
β
≤ 1. (9.62) and Lemma 3.1 imply that

‖Kn(λ, x)‖ ≤ (C1,2 + C2,2‖(Imλ)−1‖2)‖x‖

Hence

‖T âiGn(λ, x)T−1‖ ≤ C5‖(Imλ)−1‖
1
d + ‖x‖‖ai‖(C1,1 + C2,2‖(Imλ)−1‖2). (9.63)

Moreover, by (9.37) and (9.51),

‖G̃(Λn(λ, x))‖ ≤ 2Ĉ(1 + ‖(Imλ)−1‖2. (9.64)

By (9.62) and (9.63), there is a δ ∈ (0, 1), such that when ‖(Imλ)−1‖ < δ and ‖x‖ < δ,
then for all n ∈ N,

r+s∑
i=1

‖G̃(Λn(λ, x))âi‖‖T âiGn(λ, x)T−1‖ < 1.

That is, (9.60) holds, and therefore z = w, which shows that Gn(λ, x) = G̃(Λn(λ, x))
when (λ, x) belongs to the set

Un = {λ ∈ V̂n | ‖(Imλ)−1‖ < δ} × {x ∈Mk(C) | ‖x‖ < δ}.

Exactly as for the sets Vn in section 5, we can prove that V̂n is connected and that there
exists N ∈ N, such that {λ ∈ V̂n | ‖(Imλ)−1‖ < δ} is non-empty for all n ≥ N. Lemma 9.14
now follows by uniqueness of analytic continuation. �

9.15 Lemma. There is a constant C6 ≥ 0 such that for λ ∈ O, x ∈ B and n ∈ N

‖Gn(λ, x)−G(λ, x)‖ ≤ C6

n
(1 + ‖λ‖)(1 + ‖(Imλ)−1‖14).

Proof. At �rst assume that λ ∈ V̂n. Put

µn = Λn(λ, x) and µ =

(
Λt x
0 Λ

)
.

According to Lemma 9.14 and (9.38) we then have that

G̃(µu) = Gn(λ, x) and G̃(µ) = G(λ, x).
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Hence,

‖Gn(λ, x)−G(λ, x)‖ = ‖G̃(µn)− G̃(µ)‖
≤ ‖(µn ⊗ 1A − ŝ)−1 − (µ⊗ 1A − ŝ)−1‖
≤ ‖(µn ⊗ 1A − s)−1‖‖µn − µ‖‖(µ⊗ 1A − ŝ)−1‖

. (9.65)

By Lemma 9.10 (i),

‖(µ⊗ 1A − ŝ)−1‖ = ‖π(λ, x)−1‖ ≤ Ĉ(1 + ‖(Imλ)−1‖2),

and by (9.51) and (9.49),

‖(µn ⊗ 1A − ŝ)−1‖ ≤ 2Ĉ(1 + ‖(Imλ)−1‖2),

and

‖µn − µ‖ ≤
C3

n
(1 + ‖λ‖)(1 + ‖(Imλ−1‖10).

Inserting these estimates in (9.65) we get that

‖Gn(λ, x)−G(λ, x)‖ ≤ C
(1)
6

n
(1 + ‖λ‖)(1 + ‖(Imλ)−1‖14)

for some constant C
(1)
6 ≥ 0. If λ /∈ V̂n, then by (9.46),

1 ≤ C4

n
(1 + ‖λ‖)(1 + ‖(Imλ)−1‖10)(1 + ‖(Imλ)−1‖2).

Therefore

‖Gn(λ, x)−G(λ, x)‖

≤ C4

n
(1 + ‖λ‖)(1 + ‖(Imλ)−1‖10)(1 + ‖(Imλ)−1‖2)(‖Gn(λ, x)‖+ ‖G(λ, x)‖).

Taking (9.44) and (9.45) into account we then get the estimate

‖Gn(λ, x)−G(λ, x)‖ ≤ C
(2)
6

n
(1 + ‖λ‖)(1 + ‖(Imλ)−1‖14)

for a constant C
(2)
6 ≥ 0. This proves Lemma 9.15 with C6 = max{C(1)

6 , C
(2)
6 }. �

Proof of Theorem 9.6 Let λ ∈ O and x ∈ B. By (9.61) and (9.62),

Gn(λ, x) =

(
Gn(λ)t Kn(λ, x)

0 Gn(λ)

)
,

where Kn(λ, x) is given by (9.62). Similarly,

G(λ, x) =

(
G(λ)t K(λ, x)

0 G(λ)

)
,
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where
K(λ, x) = −(idk ⊗ τ)[(Λt ⊗ 1A − st)−1(x⊗ 1A)(Λ⊗ 1A − s)−1] (9.66)

Hence, by Lemma 9.15,

‖Kn(λ, x)−K(λ, x)‖ ≤ C6

n
(1 + ‖λ‖)(1 + ‖(Imλ)−1‖14).

But Kn(λ, x) and K(λ, x) are well-de�ned for all x ∈ Mk(C). Moreover, since they are
linear in x, it follows that

‖Kn(λ, x)−K(λ, x)‖ ≤ C6

n
(1 + ‖λ‖)(1 + ‖(Imλ)−1‖14)‖x‖ (9.67)

for all λ ∈ O and all x ∈Mk(C). By (9.12) and (9.23),

Rn(λ) =
r+s∑
j=1

k∑
u,v=1

εjaje
(k)
uvKn(λ, e(k)

uv aj),

and

R(λ) =
r+s∑
j=1

k∑
u,v=1

εjaje
(k)
uvK(λ, e(k)

uv aj).

Hence by (9.67)

‖Rn(λ)−R(λ)‖ ≤ C̃4

n
(1 + ‖λ‖)(1 + ‖(Imλ)−1‖14)

for same constant C̃4 ≥ 0. �

10 The spectrum of Qn � the real case.

With the same notation as in the previous section, x1, . . . , xr+s is a semicircular system in

a C∗-probability space (A, τ) with τ faithful, X
(n)
1 , . . . , X

(n)
r+s are stocasticly independent

random matrices, for which,

X
(n)
1 , . . . , X(n)

r ∈ GOE
(
n,

1

n

)
and X

(n)
r+1, . . . , X

(n)
r+s ∈ GOE∗

(
n,

1

n

)
.

Let p ∈Mm(C)⊗ C < X1, . . . , Xr+s > and put

q = p(x1, . . . , xr+s), Qn = p(X
(n)
1 , . . . , X

(n)
r+s).

Moreover de�ne g, gn : C \ R→ C by

g(λ) = (trm ⊗ τ)[(λ1m ⊗ 1A − q)−1], (λ ∈ C \ R),

gn(λ) = E{(trm ⊗ trn)[(λ1m ⊗ 1n −Qn)−1]}, (λ ∈ C \ R).
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Let E = 1m ⊕Ok−m ∈Mk(C). Then for λ ∈ C \ R, we have

g(λ) =
k

m
trk(EG(λ1m)E),

and

gn(λ) =
k

m
trk(EGn(λ1m)E).

Now, de�ne l : C \ R→ C by

l(λ) =
k

m
trk(EL(λ1m)E), (λ ∈ C \ R).

Then l is analytic, and applying Theorem 9.7 we �nd that there is a constant C ≥ 0 such
that ∣∣∣g(λ)− gn(λ) +

1

n
l(λ)

∣∣∣ ≤ C

n2
(1 + |λ|)2(1 + |Imλ|−17) (10.1)

when Imλ > 0. Moreover, by arguing as in the proof of [S, Theorem 4.5] the inequality
(10.1) also holds when Imλ < 0.

10.1 Lemma. There is a distribution ∆ ∈ D′c(R) with supp(Λ) ⊆ σ(q), such that for
any φ ∈ C∞c (R),

∆(φ) = lim
y→0+

i

2π

∫
R

φ(x)[l(x+ iy)− l(x− iy)]dx. (10.2)

Proof. At �rst we prove that l has an analytic continuation to C\σ(q). We know that for
any λ ∈ C \ σ(q), λ1m ⊗ 1A − q is invertible. Thus with Λ = (λ1m)⊕ 1k−m ∈ Mk(C) we
know from lemma 3.2 that Λ⊗1A−s is invertible. But then Λt⊗1A−st is also invertible.
It follows that λ → R(λ1m) and λ → G(λ1m) have analytic continuations to C \ σ(q).
Moreover, G(λ1m) is invertible for all λ ∈ C \σ(q). Indeed, C \σ(q) is connected, and we
have seen that for all λ belonging to some open non-empty subset of C\σ(q), the identity(

a0 +
r+s∑
i=1

aiG(λ1m)ai − Λ
)
G(λ1m) + 1k = 0. (10.3)

holds. Then, by uniqueness of analytic continuation, (10.3) must hold for all λ ∈ C\σ(q).
In particular, G(λ1m) is invertible for such λ. We conclude that l is well-de�ned and
analytic in all of C \ σ(q).

The next step is to prove that l satis�es (a) and (b) of [S, Theorem 5.4]. Let λ ∈ C \ R,
and put Λ = (λ1m)⊕ 1k−m ∈Mk(C). According to the proof of lemma 3.2,

(Λ⊗ 1A − s)−1 = C +B(λ),

where (Q⊗ 1A)C = C(Q⊗ 1A) = 0, and

‖B(λ)‖ ≤ C ′2,1‖(λ1m ⊗ 1A − q)−1‖ ≤ C ′2,1|Imλ|−1.
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Moreover, if |λ| > ‖q‖, then

‖B(λ)‖ ≤
C ′2,1

|λ| − ‖q‖
.

Now,

EL(λ1m)E = (idk⊗τ)[(E⊗1A)(Λ⊗1A−s)−1(R(λ1m)G(λ1m)−1⊗1A)(Λ⊗1A−s)−1(E⊗1A)],

implying that
‖EL(λ1m)E‖ ≤ C2

2,1|Imλ|−2‖R(λ1m)G(λ1m)−1‖, (10.4)

and if |λ| > ‖q‖, then

‖EL(λ1m)E‖ ≤

(
C2,1

|λ| − ‖q‖

)2

‖R(λ1m)G(λ1m)−1‖. (10.5)

We have seen that

‖R(λ1m)‖ ≤ k2

r+s∑
i=1

‖ai‖2‖(Λ⊗ 1A − s)−1‖2, (10.6)

where
‖(Λ⊗ 1A − s)−1‖ ≤ C ′1,1 + C ′2,1|Imλ|−1, (10.7)

and if |λ| > ‖q‖, then

‖(Λ⊗ 1A − s)−1‖ ≤ C ′1,1 +
C ′2,1

|λ| − ‖q‖
. (10.8)

Also, there is a constant C1 ≥ 0 such that

‖G(λ1m)−1‖ ≤ ‖Λ‖+ ‖a0‖+
r+s∑
i=1

‖ai‖‖G(λ1m)‖‖ai‖ (10.9)

≤ ‖Λ‖+ ‖a0‖+
r+s∑
i=1

‖ai‖‖(Λ⊗ 1A − s)−1‖‖ai‖ (10.10)

≤ C1(1 + |λ|)(1 + |Imλ|−1), (10.11)

and if |λ| > ‖q‖, then

‖G(λ1m)−1‖ ≤ C1(1 + |λ|)

(
1 +

1

|λ| − ‖q‖

)
. (10.12)

(10.5), (10.6), (10.8) and (10.12) imply that

|l(λ)| ≤ O
( 1

|λ|

)
as |λ| → ∞. (10.13)
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Combining (10.4), (10.6), (10.7) and (10.11) we �nd that for some constant C2 ≥ 0,

|l(λ)| ≤ ‖EL(λ1m)E‖ ≤ C2(1 + |λ|)(|Imλ|−2 + |Imλ|−5). (10.14)

Choose a, b ∈ R, a < b, such that σ(q) ⊆ [a, b]. Put K = [a− 1, b+ 1] and

D = {λ ∈ C|0 < dist(λ,K) ≤ 1}.

By (10.14), there is a constant C3 ≥ 0 such that for any λ ∈ D,

|l(λ)| ≤ C3 ·max{1, (dist(λ,K))−5} = C3 · (dist(λ,K))−5.

(10.13) implies that l is bounded on C \D. Therefore C3 may be chosen such that for all
λ ∈ C \ σ(q)

|l(λ)| ≤ C3 ·max{1, (dist(λ,K))−5}. (10.15)

By (10.13) and (10.15), l satis�es (a) and (b) of [S, Theorem 5.4], and the lemma follows.
�

Knowing that (10.1) holds we are now able to prove:

10.2 Theorem. Let φ ∈ C∞c (R). Then

E{(trm ⊗ trn)φ(Qn)} = (trm ⊗ τ)φ(q) +
1

n
∆(φ) +O

( 1

n2

)
.

Proof. The result follows from a simple modi�cation of the proof of [S, Theorem 5.6].
�

10.3 Lemma. Let n ∈ N, and let Xn ∈ GOE(n, 1
n
) ∪GOE∗(n, 1

n
). Then

(i) for all ε > 0, P (‖Xn‖ >
√

2(2 + ε)) < 2n exp
(
− nε2

2

)
,

(ii) there is a sequence of constants not depending on n, (γ′(k))∞k=1, such that for all
k ∈ N,

E{1(‖Xn‖>3
√

2)‖Xn‖k} ≤ γ′(k)ne−
n
2 .

Proof. We may assume that Xn = 1√
2
(Yn + Y ) or Xn = 1√

2i
(Yn − Y ) for some Yn ∈

SGRM(n, 1
n
). Hence, by [S, Proof of Lemma 6.4],

P (‖Xn‖ >
√

2(2 + ε)) ≤ P (‖Yn‖ > 2 + ε) ≤ 2n exp
(
− nε2

2

)
holds for all ε > 0. Then by application of the proof of Proposition 6.4 to the random
variable 1√

2
‖Xn‖ we get that

E

{
1( 1√

2
‖Xn‖>3

)( 1√
2
‖Xn‖

)k}
≤ γ(k)ne−

n
2 .

Hence (ii) holds with γ′(k) = 2k/2γ(k). �
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10.4 Lemma. Let ∆ ∈ D′c(R) be as in Lemma 10.1. Then ∆(1) = 0.

Proof. With d = deg(p), x0 = 1A, and X
(n)
0 = 1n we may choose ci1,...,id ∈ Mm(C),

0 ≤ i1, . . . , id ≤ r + s, such that

q = p(x1, . . . , xr+s) =
∑

0≤i1,...,id≤r+s

ci1,...,id ⊗ xi1 · · ·xid

and
Qn = p(X

(n)
1 , . . . , X

(n)
r+s) =

∑
0≤i1,...,id≤r+s

ci1,...,id ⊗X
(n)
i1
· · ·X(n)

id
.

Put
R = (3

√
2)d

∑
0≤i1,...,id≤r+s

‖ci1,...,id‖.

Then

(‖Qn‖ > R) ⊆ (
∑

0≤i1,...,id≤r+s

‖ci1,...,id‖‖X
(n)
i1
‖ · · · ‖X(n)

id
‖ > R) ⊆

r+s⋃
i=1

(‖X(n)
i ‖ > 3

√
2),

implying that

P (‖Qn‖ > R) ≤ r · P (‖X(n)
1 ‖ > 3

√
2) + s · P (‖X(n)

r+1‖ > 3
√

2).

Now, by Lemma 10.3,

P (‖X(n)
i ‖ > 3

√
2) ≤ 2n · exp

(
− n

2

)
, (i = 1, . . . , r + s),

and thus
P (‖Qn‖ > R) ≤ 2(r + s)n · exp

(
− n

2

)
.

Consequently,

E{(trm ⊗ trn)1]−∞,R[∪]R,∞[(Qn)} ≤ P (‖Qn‖ > R) ≤ 2(r + s)n · exp
(
− n

2

)
. (10.16)

Now, let φ ∈ C∞c (R) such that 0 ≤ φ ≤ 1 and φ|[−R,R] = 1. Then φ(x) = 1 for all x in a
neighbourhood of σ(q) ⊇ supp(Λ). Hence ∆(φ) = ∆(1), and we have that

E{(trm ⊗ trn)φ(Qn)} = 1 +
1

n
∆(1) +O

( 1

n2

)
,

where
E{(trm ⊗ trn)φ(Qn)} = 1 + E{(trm ⊗ trn)(φ− 1)(Qn)}
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and

|E{(trm ⊗ trn)(φ− 1)(Qn)}| ≤ E{(trm ⊗ trn)1]−∞,R[∪]R,∞[(Qn)} ≤ 2(r + s)n · exp
(
− n

2

)
.

Altogether we have that

E{(trm ⊗ trn)(φ− 1)(Qn)} =
1

n
∆(1) +O

( 1

n2

)
, (10.17)

where the left hand side is of the order n·exp(−n
2
) = O

(
1
n2

)
. Hence, the 1

n
-term appearing

on the right hand side of (10.17) must be zero. �

10.5 Proposition. Let φ ∈ C∞(R,R) such that φ is constant outside a compact subset
of R. Suppose that

supp(φ) ∩ σ(q) = ∅.

Then
V{(trm ⊗ trn)φ(Qn)} = O(n−4),

and
P (|(trm ⊗ trn)φ(Qn)| ≤ n−

4
3 , eventually as n→∞) = 1.

Proof. Taking Lemma 10.3 (ii) into account this result follows as in the complex case (cf.
proof of Theorem 6.2). �

Taking Theorem 10.2, Lemma 10.4, Proposition 10.5 and Proposition 6.3 into account,
we �nd, as in Section 6:

10.6 Theorem. Let ε > 0. Then for almost every ω ∈ Ω,

σ(Qn(ω)) ⊆ σ(q)+ ]− ε, ε[,

eventually as n→∞.

10.7 Remark. By [S, Section 7] and the remarks in the beginning of section 9, Theo-
rem 10.2, Proposition 10.5 and Theorem 10.6 can easily be generalized to the symplectic
case i.e. to the case where X

(n)
1 , . . . , X

(n)
r+s are stochasticly independent random matrices

for which

X
(n)
1 , . . . , X(n)

r ∈ GSE
(
n,

1

n

)
and X

(n)
r+1, . . . , X

(n)
r+s ∈ GSE∗

(
n,

1

n

)
.
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11 Gaps in the spectrum of q � the real case

In this section we shall prove that Theorem 8.2 holds in the GOE ∪ GOE∗-case as well.
That is, if p ∈ (Mm(C) ⊗ C〈X1, . . . , Xr+s〉)sa, if x1, . . . , xr+s is a semicircular system

in (A, τ), and if for each n ∈ N, X(n)
1 , . . . , X

(n)
r+s are stochastically independent random

matrices from GOE(n, 1
n
)∪GOE∗(n, 1

n
) as in Section 9, then with q = p(x1, . . . , xr+s) and

Qn = p(X
(n)
1 , . . . , X

(n)
r+s) we have:

11.1 Theorem. Let ε0 denote the smallest distance between disjoint connected com-
ponents of σ(q), let J be a connected component of σ(q), let 0 < ε < 1

3
ε0, and let

µq ∈ Prob(R) denote the distribution of q w.r.t. trm ⊗ τ . Then µq(J) = k
m

for some
k ∈ {1, . . . ,m}, and for almost all w ∈ Ω, the number of eigenvalues of Qn(w) in J+]−ε, ε[
is k · n, eventually as n→∞.

Proof. Take φ ∈ C∞c (R), such that φ|J+]−ε,ε[ = 1 and φ|R\(J+]−2ε,2ε[) = 0. Then φ(q) is a
non-zero projection in Mm(C∗(1A, x1, . . . , xn)) and hence, by Theorem 7.1,

µq(J) =

∫
R

ϕdµq = (trm ⊗ τ)φ(q) =
k

m
(11.1)

for some k ∈ {1, . . . ,m}. By Theorem 10.6 there is a P -null set N ⊂ Ω, such that for all
ω ∈ Ω\N

σ(Qn(ω)) ⊆ σ(q)+]− ε, ε[,
eventually as n → ∞. In particular, for all ω ∈ Ω\N there exists N(ω) ∈ N such
that φ(Qn(ω)) is a projection for all n ≥ N(w). For ω ∈ Ω\N and n ≥ N(ω) take
Kn(ω) ∈ {0, . . . ,m · n}, such that

(trm ⊗ trn)ϕ(Qn(ω)) =
Kn(ω)

m · n
. (11.2)

Let ∆: C∞c (R)→ C be the distribution from Lemma 10.1, and put

Zn = (trm ⊗ trn)φ(Qn)− (trm ⊗ τ)φ(q)− 1

n
∆(φ).

Then by Theorem 10.2, E(Zn) = O( 1
n2 ). Moreover, since ϕ′ vanishes in a neighbourhood

of σ(q), we get as in the proof of Theorem 6.2 that

V(Zn) = O( 1
n4 )

and
Zn = O(n−

4
3 ) almost surely.

Hence there exists a P -null set N ′ ⊆ N , such that

(trm ⊗ trn)φ(Qn(ω)) = (trm ⊗ τ)φ(q) +
1

n
∆(φ) +O(n−

4
3 )

holds for all ω ∈ Ω \N ′.
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Taking (11.1) and (11.2) into account, we get after multiplication by mn that for ω ∈ Ω\N
and n ≥ N(ω),

Kn(ω) = nk +m∆(ϕ) +O(n−
1
3 ). (11.3)

Therefore there exists C > 0 such that dist(m∆(ϕ),Z) ≤ C n−
1
3 for all n ≥ N(ω), which

implies that m∆(ϕ) ∈ Z.
We next use an argument based on homotopy to show that ∆(ϕ) = 0. By de�nition

Qn = p(X
n)
1 , . . . , X

(n)
r+s)

where X
(n)
1 , . . . , X

(n)
r ∈ GOE(n, 1

n
), X

(n)
r+1, . . . , X

(n)
r+s ∈ GOE∗(n, 1

n
) form a set of r + s

independent random matrices. We may without loss of generality assume that there exist
Y

(n)
1 , . . . , Y

(n)
r ∈ GOE∗(n, 1

n
) and Y

(n)
r+1, . . . , Y

(n)
r+s ∈ GOE(n, 1

n
) such that X

(n)
1 , . . . , X

(n)
r+s,

Y
(n)

1 , . . . , Y
(n)
r+s form a set of 2(r + s) independent random matrices. For j = 1, . . . , r + s

put
X

(n)
j (t) = cos t X

(n)
j + sin t Y

(n)
j , (0 ≤ t ≤ π

4
).

It is a simple observation that if Z ∈ GOE(n, 1
n
) andW ∈ GOE∗(n, 1

n
), then 1√

2
(Z+W ) ∈

SGRM(n, 1
n
). Hence

(X
(n)
1 (t), . . . , X

(n)
r+s(t)), (0 ≤ t ≤ π

4
)

de�nes a path which connects the given set of random matrices X
(n)
1 , . . . , X

(n)
r+s (at t = 0)

with a set of r + s independent SGRM(n, 1
n
) random matrices (at t = π

4
). Put

Qn(t) = q(X
(n)
1 (t), . . . , X

(n)
r+s(t)), (0 ≤ t ≤ π

4
).

Let x1, . . . , xr+s, y1, . . . , yr+s be a semicircular system in a C∗-probability space (A, τ)
with τ faithful. Put

xj(t) = cos t xj + sin t yj, (0 ≤ t ≤ π
4
).

Since an orthogonal transformation of a semicircular system is again a semicircular system
(cf. [VDN, Proposition 5.12]), x1(t), . . . , xr+s(t) is a semicircular system for each t ∈ [0, π

4
].

Hence the operators

q(t) = q(z1(t), . . . , xr+s(t)), (0 ≤ t ≤ π
4
)

form a norm continuous path in A for which σ(q(t)) = σ(q). Moreover

(λ, t)→ (λ1m ⊗ 1A − q(t))−1 (11.4)

is norm continuous on (C\σ(q))×[0, π
4
]. For t ∈ [0, π

4
], Qn(t) can be expressed as a polyno-

mial in X
(n)
1 , . . . , X

(n)
r+s, Y

(n)
1 , . . . , Y

(n)
r+s, and q(t) can be expressed as the same polynomial

in x1, . . . , xr+s, y1, . . . , yr+s. Hence, by Lemma 10.1 and Theorem 10.2, there exists for
each t ∈ [0, π

4
] a distribution Λt : C

∞
r (C)→ C, such that for all ψ ∈ C∞c (R):

E{(trm ⊗ trn)ψ(Qn(t))} = (trm ⊗ τ)ψ(q(t)) +
1

n
Λt(ψ) +O( 1

n2 ).
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Since σ(q(t)) = σ(q), 0 ≤ t ≤ π
4
, we get by the �rst part of this proof that

m∆t(ϕ) ∈ Z, (0 ≤ t ≤ π
4
), (11.5)

where ϕ is the function chosen in the beginning of the proof. Moreover, by Theorem 6.1,

E{(trm ⊗ trn)ϕ(Qn(π
4
)} = (trm ⊗ τ)ϕ(q(π

4
)) +O( 1

n2 ),

which implies that
∆π/4(ϕ) = 0. (11.6)

We next prove that t→ ∆t(ϕ) is a continuous function:

Let

`t(λ) = ∆t

( 1

λ− x

)
, (λ ∈ C\σ(q))

be the Stieltjes transformation of ∆t, 0 ≤ t ≤ π
4
(cf. [S, Lemma 5.4]). By a simple

modi�cation of the proof of [S, Lemma 5.6], we get that

∆t(ϕ) =
1

2πi

∫
∂R

`t(λ)dλ (11.7)

where ∂R is the boundary of the rectangle

R = (J + [−ε, ε])× [−1, 1]

with counter clockwise orientation. Since (λ, t)→ (λ1m⊗1A−q(t))−1 is norm continuous
on (C\σ(q)) × [0, π

4
], it is obvious from the explicit formula for the Stieltjes transform

`t(λ) (cf. (10.2)) that (λ, t)→ `t(λ) is a continuous function on (C\σ(q))× [0, π
4
]. Hence

by (11.7), ∆t(ϕ) is a continous funtion of t ∈ [0, π
4
]. Together with (11.5) and (11.6)

this shows that ∆(ϕ) = ∆0(ϕ) = 0. Hence by (11.3) we have for all ω ∈ Ω \ N ′ and all
n ≥ N(ω) that

Kn(ω) = nk +O(n−
1
3 ),

and since Kn(ω) ∈ N, it follows that kn(ω) = nk eventually as n→∞. �

11.2 Remark. Using again [S, Section 7], Theorem 11.1 can also be generalized to the
symplectic case (cf. remark 10.7).
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