Known and unknown ranges

Søren Eilers

June 24, 2005

Congratulations, George – and thanks!

The class of $\overline{\mathbf{AF}}$ algebras is the smallest class of C^* -algebras closed under

$$-\otimes \mathbf{M}_n, -\oplus -, \varinjlim -$$

and containing $\mathbb{C}.$

Let us abbreviate such a statement as follows:

$$\mathsf{AF} = \mathsf{A}\langle \langle \mathbb{C} \rangle \rangle$$

Complete invariant [Elliott] Unital **AF** algebras are classified up to isomorphism by

```
[K_0(-), K_0(-)_+, [1]]
```

Range [Effros-Handelman-Shen] The invariant ranges over all countable dimension groups with order unit.

These are the pointed ordered groups $[G, G_+, u]$ such that

G is ordered: G has the Riesz property: $G_+ \cap -G_+ = \{0\}, G_+ - G_+ = G \quad \forall a, b_i \in G_+ : a \le b_1 + b_2 \exists a_i \in G_+ : a = a_1 + a_2, a_i \le b_i$

G is unperforated:	u is an order unit:
$na \in G_+, n \in \mathbb{N} \Longrightarrow a \in G_+$	$\forall a \in G_+ \exists n \in \mathbb{N} : a \leq nu$

Complete invariant [Kirchberg-Phillips] Unital **purely infinite, simple, separable, nuclear** algebras in the bootstrap category \mathcal{N} are classified up to isomorphism by

 $[K_*(-), [1]]$

Range [Rørdam] The invariant ranges over all graded, countable pointed groups. **Complete invariant** [Kirchberg] Unital separable and nuclear algebras A in the bootstrap category \mathcal{N} with $A \simeq \mathcal{O}_2 \otimes A$ are classified up to isomorphism by

Prim(-)

Range unknown!

Relevant results by Bratteli-Elliott, Kirchberg-Harnisch, Kirchberg-Rørdam.

Complete invariant [Elliott] Unital **AT** algebras *of real rank zero* are classified up to isomorphism by

$$K_*(-), K_*(-)_+, [1]]$$

where $K_*(-) = K_0(-) \oplus K_1(-)$.

Range [Elliott] The invariant ranges over all countable graded dimension groups with order unit.

These are dimension groups $G_* = G_0 \oplus G_1$ such that

$$(x, y_1), (x, y_2) \in (G_*)_+ \Longrightarrow (x, y_1 \pm y_2) \in (G_*)_+$$

$\mathbf{AH} = \mathbf{A} \langle \langle C(X) \mid X \text{ compact Hausdorff} \rangle \rangle$

Complete invariant [Dadarlat-Gong] Unital **AH** algebras of *real rank zero* and with *slow dimension growth* are classified up to isomorphism by

$[\underline{\mathbf{K}}(-),\underline{\mathbf{K}}(-)_+,\Lambda,[1]]$

$\mathbf{AH} = \mathbf{A} \langle \langle C(X) \mid X \text{ compact Hausdorff} \rangle \rangle$

Complete invariant [Dadarlat-Gong] Unital **AH** algebras of *real rank zero* and with *slow dimension growth* are classified up to isomorphism by

 $[\underline{\mathbf{K}}(-),\underline{\mathbf{K}}(-)_+,\Lambda,[1]]$

Here

$$\underline{\mathbf{K}}(A) = K_*(A) \oplus \bigoplus_{n \ge 2} K_*(A; \mathbb{Z}/n)$$
$$\wedge = \{\rho_n^i, \beta_n^i, \kappa_{n,m}^i\}$$

The one thing to remember

- The invariants occurring have order induced by maps $\phi : G \longrightarrow H$ in the sense that $h \in \operatorname{im} \phi$ is positive precisely when there exists $g \in G_+$ with $\phi(g) = h$.
- This leaves a lot of freedom when ϕ is not surjective!

 $KK-based \ order:$ $K_*(A) = KK(C(\mathbb{T}), A) \supseteq \{[f] \mid f \ a \ *-homomorphism\}$

 K_0 -based order: $K_*(A) = K_0(C(\mathbb{T}) \otimes A) \supseteq \{[p] \mid p \text{ a projection}\}$

Ideal-based order:

 $K_*(A) \ni (x,y) \ge 0 \iff x \ge 0 \text{ and } y \in K_1(I(X))$

All the same for an A of real rank zero. But to equip $K_0(A; \mathbb{Z}/n)$ as the odd part of a graded ordered group we need to choose the ideal-based order. Immaterial by [Dadarlat-E], so think about $K_0(A) \oplus K_0(A; \mathbb{Z}/n) = KK(\mathbb{I}_n^{\sim}, A) \supseteq \{[f] \mid f \text{ a }*\text{-homomorphism}\}$

Assume tor $K_*(A) = 0!$

If A is an AH algebra of real rank zero and with slow dimension growth then A is AT.

Assume tor $K_*(A) = 0!$

If A is an **AH** algebra of real rank zero and with slow dimension growth then A is **AT**.

 $\boldsymbol{\rho}$ is surjective, so

 $\mathsf{id} \oplus \rho : K_0(A) \oplus K_0(A) \longrightarrow K_0(A) \oplus K_0(A; \mathbb{Z}/n)$

completely determines the order on $K_0(A) \oplus K_0(A; \mathbb{Z}/n)$.

We are equipping $K_0 \oplus K_0$ as a graded ordered group!

Assume now only tor $K_0(A) = 0!$

If A is an **AH** algebra of real rank zero and with slow dimension growth then A is **AD**, where $\mathbf{AD} = \mathbf{A} \langle \langle C(\mathbb{T}), \mathbb{I}_2^{\sim}, \mathbb{I}_3^{\sim}, \mathbb{I}_4^{\sim}, \ldots \rangle \rangle$

Complete invariant [Dadarlat-E] Unital **AD** algebras *of real rank zero* are classified up to isomorphism by

$$K_0(-) \longrightarrow K_0(-) \otimes \mathbb{Q} \longrightarrow K_0(-; \mathbb{Q}/\mathbb{Z}) \longrightarrow K_1(-)$$

Reduced invariant [E] Unital **AD** algebras of real rank zero are classified up to isomorphism by

$$K_0(-) \longrightarrow K_0(-; \mathbb{Z}/n) \longrightarrow K_1(-)$$

provided that $n \operatorname{tor} K_1(-) = 0$.

Range [Elliott] $K_*(AD \cap RRZ)$ ranges over all countable graded dimension groups with torsion in the odd part.

This means that the unperforation condition is relaxed to unperforation in G_0 and <u>weak</u> unperforation in $G_0 \oplus G_1$: $(x,my) \in (G_*)_+, \Longrightarrow y = y_1 + y_2, my_1 = 0, (x,y_2) \in (G_*)_+$ **Range** [E-Toms] The reduced invariant ranges over all exact complexes

$$G_0 \xrightarrow{\times n} G_0 \xrightarrow{\rho} G_n \xrightarrow{\beta} G_1 \xrightarrow{\times n} G_1$$

where $nG_n = (0), n \text{ tor } G_1 = (0)$ and

- $G_0 \oplus G_1$ is a graded dimension group with torsion
- $G_0 \oplus G_n$ is a graded ordered group
- The inherited order on $G_0 \oplus \operatorname{im} \rho \subseteq G_0 \oplus G_n$ equals the order induced by $\operatorname{id} \oplus \rho : G_0 \oplus G_0 \longrightarrow G_0 \oplus G_n$
- The inherited order on $G_0 \oplus \operatorname{im} \beta \subseteq G_0 \oplus G_1$ equals the order induced by $\operatorname{id} \oplus \beta : G_0 \oplus G_n \longrightarrow G_0 \oplus G_1$.

Proof by Shen criterion:

$$\begin{bmatrix} B_{0} \to B_{n} \to B_{1} \end{bmatrix}_{\substack{\bar{z} \in \bar{z} \in \bar{z} \in \bar{z} \neq \bar{z} \neq$$

Key to augment Elliott's proof:

[Wehrung] Suppose $a, b \in (G_0)_+$ and $a \leq nb$, G_0 an ordered group with the Riesz property.

$$\exists b_0,\ldots,b_n \in (G_0)_+$$
 such that $b = \sum_{i=0}^n b_i$ and $a = \sum_{i=1}^n ib_i$.

Example by Dadarlat and Loring:

$$G_0 = \left\{ (x, (y_i)) \in \mathbb{Z}[\frac{1}{3}] \oplus \mathbb{Z}^{\mathbb{Z}} \mid y_i - 3^{|i|} x \longrightarrow 0 \right\}$$
$$G_1 = \mathbb{Z}/2$$

How many ways can we equip

$$G_{0} \xrightarrow{x \mapsto a}_{y_{i} \mapsto b_{i}} \left\{ (a, b_{i}, c) \in \mathbb{Z}/2 \oplus (\mathbb{Z}/2)^{\mathbb{Z}} \oplus \mathbb{Z}/2 \mid b_{i} \longrightarrow a \right\} \xrightarrow{c \mapsto z} G_{1}?$$

For any $(\epsilon_i) \in (\mathbb{Z}/2)^{\mathbb{Z}}$ we may take the order given by

$$((x, y_i), (a, (b_i), c)) \ge 0 \iff \begin{cases} x > 0 \text{ or } [x = 0, a = 0, c = 0] \\ y_i > 0 \text{ or } [y_i = 0, b_i + \epsilon_i c = 0] \end{cases}$$

This gives uncountably many nonisomorphic invariants!

Range [E-Toms] The complete invariant ranges over all exact complexes

$$G_0 \longrightarrow G_0 \otimes \mathbb{Q} \xrightarrow{\widetilde{\rho}} G_\infty \xrightarrow{\widetilde{\beta}} G_1$$

where G_{∞} is pure torsion, im $\tilde{\beta} = \operatorname{tor} G_1$ and

- $G_0 \oplus G_1$ is a graded dimension group with torsion
- $(G_0 \otimes \mathbb{Q}) \oplus G_\infty$ is an ordered group
- The inherited order on $(G_0 \otimes \mathbb{Q}) \oplus \operatorname{im} \tilde{\rho} \subseteq (G_0 \otimes \mathbb{Q}) \oplus G_\infty$ equals the order induced by $\operatorname{id} \oplus \tilde{\rho}$
- The inherited order on $G_0 \oplus \operatorname{im} \widetilde{\beta} \subseteq G_0 \oplus G_1$ equals the order induced by $\operatorname{id} \oplus \widetilde{\beta}$

We are not done yet!

 $\mathbf{AH} \cap \mathbf{RRZ} \cap \mathbf{SDG} \cap \{ \operatorname{tor} K_1 = 0 \} \subsetneq \mathbf{AD} \cap \mathbf{RRZ} \cap \{ \operatorname{tor} K_1 = 0 \} !$

[Dadarlat-E] When A is **AH** of real rank zero we have

Range unknown!

$\mathsf{ASH} = \mathsf{A}\langle\langle C(X), \mathbb{I}_2^{\sim}, \mathbb{I}_3^{\sim}, \mathbb{I}_4^{\sim}, \ldots\rangle\rangle$

Complete invariant [Dadarlat-Gong] Unital **ASH** algebras of *real rank zero* and with *slow dimension growth* are classified up to isomorphism by

$$[\underline{\mathbf{K}}(-), \underline{\mathbf{K}}(-)_+, \Lambda, [1]]$$

Subrange [E-Toms] As above when tor $K_1 = 0$.

General range unknown!