Known and unknown ranges

Søren Eilers

June 24, 2005

Congratulations, George - and thanks!

$$
2
$$

The class of AF algebras is the smallest class of C^{*}-algebras closed under
$-\otimes \mathbf{M}_{n},-\oplus-, \underline{\longrightarrow}-$
and containing \mathbb{C}.

Let us abbreviate such a statement as follows:

$$
\mathbf{A F}=\mathbf{A}\langle\langle\mathbb{C}\rangle\rangle
$$

Complete invariant [Elliott] Unital AF algebras are classified

 up to isomorphism by$$
\left[K_{0}(-), K_{0}(-)_{+},[1]\right]
$$

Range [Effros-Handelman-Shen] The invariant ranges over all countable dimension groups with order unit.

These are the pointed ordered groups $\left[G, G_{+}, u\right]$ such that

$$
\begin{array}{cc}
G \text { is ordered: } & G \text { has the Riesz property: } \\
G_{+} \cap-G_{+}=\{0\}, G_{+}-G_{+}=G & \forall a, b_{i} \in G_{+}: a \leq b_{1}+b_{2} \exists a_{i} \in G_{+}: a=a_{1}+a_{2}, a_{i} \leq b_{i} \\
G \text { is unperforated: } & u \text { is an order unit: } \\
n a \in G_{+}, n \in \mathbb{N} \Longrightarrow a \in G_{+} & \forall a \in G_{+} \exists n \in \mathbb{N}: a \leq n u
\end{array}
$$

Complete invariant [Kirchberg-Phillips] Unital purely infinite, simple, separable, nuclear algebras in the bootstrap category \mathcal{N} are classified up to isomorphism by

$$
\left[K_{*}(-),[1]\right]
$$

Range [Rørdam] The invariant ranges over all graded, countable pointed groups.

Complete invariant [Kirchberg] Unital separable and nuclear algebras A in the bootstrap category \mathcal{N} with $A \simeq \mathcal{O}_{2} \otimes A$ are classified up to isomorphism by
Prim(-)

Range unknown!

Relevant results by Bratteli-Elliott, Kirchberg-Harnisch, KirchbergRørdam.

$\mathbf{A T}=\mathbf{A}\langle\langle C(\mathbb{T})\rangle\rangle$.

Complete invariant [Elliott] Unital AT algebras of real rank zero are classified up to isomorphism by

$$
\left[K_{*}(-), K_{*}(-)_{+},[1]\right]
$$

where $K_{*}(-)=K_{0}(-) \oplus K_{1}(-)$.
Range [Elliott] The invariant ranges over all countable graded dimension groups with order unit.

These are dimension groups $G_{*}=G_{0} \oplus G_{1}$ such that

$$
\left(x, y_{1}\right),\left(x, y_{2}\right) \in\left(G_{*}\right)_{+} \Longrightarrow\left(x, y_{1} \pm y_{2}\right) \in\left(G_{*}\right)_{+}
$$

$\mathbf{A H}=\mathbf{A}\langle\langle C(X)| X$ compact Hausdorff $\rangle\rangle$.

Complete invariant [Dadarlat-Gong] Unital AH algebras of real rank zero and with slow dimension growth are classified up to isomorphism by

$$
\left[\underline{\mathbf{K}}(-), \underline{\mathbf{K}}(-)_{+}, \wedge,[1]\right]
$$

$\mathbf{A H}=\mathbf{A}\langle\langle C(X)| X$ compact Hausdorff $\rangle\rangle$.

Complete invariant [Dadarlat-Gong] Unital AH algebras of real rank zero and with slow dimension growth are classified up to isomorphism by

$$
\left[\underline{\mathbf{K}}(-), \underline{\mathbf{K}}(-)_{+}, \wedge,[1]\right]
$$

Here

$$
\begin{gathered}
\underline{\mathbf{K}}(A)=K_{*}(A) \oplus \bigoplus_{n \geq 2} K_{*}(A ; \mathbb{Z} / n) \\
\wedge=\left\{\rho_{n}^{i}, \beta_{n}^{i}, \kappa_{n, m}^{i}\right\}
\end{gathered}
$$

The one thing to remember

- The invariants occurring have order induced by maps $\phi: G \longrightarrow H$ in the sense that $h \in \operatorname{im} \phi$ is positive precisely when there exists $g \in G_{+}$with $\phi(g)=h$.
- This leaves a lot of freedom when ϕ is not surjective!

KK-based order:

$$
K_{*}(A)=K K(C(\mathbb{T}), A) \supseteq\{[f] \mid f \text { a } * \text {-homomorphism }\}
$$

K_{0}-based order:

$$
K_{*}(A)=K_{0}(C(\mathbb{T}) \otimes A) \supseteq\{[p] \mid p \text { a projection }\}
$$

Ideal-based order:
$K_{*}(A) \ni(x, y) \geq 0 \Longleftrightarrow x \geq 0$ and $y \in K_{1}(I(X))$

All the same for an A of real rank zero. But to equip $K_{0}(A ; \mathbb{Z} / n)$ as the odd part of a graded ordered group we need to choose the ideal-based order. Immaterial by [Dadarlat-E], so think about $K_{0}(A) \oplus K_{0}(A ; \mathbb{Z} / n)=K K\left(\mathbb{I}_{n}^{\sim}, A\right) \supseteq\{[f] \mid f$ a $*$-homomorphism $\}$

Assume tor $K_{*}(A)=0$!
If A is an AH algebra of real rank zero and with slow dimension growth then A is AT.

Assume tor $K_{*}(A)=0$!

If A is an $\mathbf{A H}$ algebra of real rank zero and with slow dimension growth then A is AT
ρ is surjective, so
id $\oplus \rho: K_{0}(A) \oplus K_{0}(A) \longrightarrow K_{0}(A) \oplus K_{0}(A ; \mathbb{Z} / n)$
completely determines the order on $K_{0}(A) \oplus K_{0}(A ; \mathbb{Z} / n)$.

We are equipping $K_{0} \oplus K_{0}$ as a graded ordered group!

Assume now only tor $K_{0}(A)=0$!

If A is an $\mathbf{A H}$ algebra of real rank zero and with slow dimension growth then A is $\mathbf{A D}$, where $\mathbf{A D}=\mathbf{A}\left\langle\left\langle C(\mathbb{T}), \mathbb{I}_{2}^{\sim}, \mathbb{I}_{3}^{\sim}, \mathbb{I}_{4}^{\sim}, \ldots\right\rangle\right\rangle$

Complete invariant [Dadarlat-E] Unital AD algebras of real rank zero are classified up to isomorphism by

$$
K_{0}(-) \longrightarrow K_{0}(-) \otimes \mathbb{Q} \longrightarrow K_{0}(-; \mathbb{Q} / \mathbb{Z}) \longrightarrow K_{1}(-)
$$

Reduced invariant [E] Unital AD algebras of real rank zero are classified up to isomorphism by

$$
K_{0}(-) \longrightarrow K_{0}(-; \mathbb{Z} / n) \longrightarrow K_{1}(-)
$$

provided that n tor $K_{1}(-)=0$.

Range [Elliott] $K_{*}(\mathbf{A D} \cap \mathbf{R R Z})$ ranges over all countable graded dimension groups with torsion in the odd part.

This means that the unperforation condition is relaxed to unperforation in G_{0} and weak unperforation in $G_{0} \oplus G_{1}$: $(x, m y) \in\left(G_{*}\right)_{+}, \Longrightarrow y=y_{1}+y_{2}, m y_{1}=0,\left(x, y_{2}\right) \in\left(G_{*}\right)_{+}$

Range [E-Toms] The reduced invariant ranges over all exact complexes

$$
G_{0} \xrightarrow{\times n} G_{0} \xrightarrow{\rho} G_{n} \xrightarrow{\beta} G_{1} \xrightarrow{\times n} G_{1}
$$

where $n G_{n}=(0), n$ tor $G_{1}=(0)$ and

- $G_{0} \oplus G_{1}$ is a graded dimension group with torsion
- $G_{0} \oplus G_{n}$ is a graded ordered group
- The inherited order on $G_{0} \oplus \operatorname{im} \rho \subseteq G_{0} \oplus G_{n}$ equals the order induced by id $\oplus \rho: G_{0} \oplus G_{0} \longrightarrow G_{0} \oplus G_{n}$
- The inherited order on $G_{0} \oplus \operatorname{im} \beta \subseteq G_{0} \oplus G_{1}$ equals the order induced by id $\oplus \beta: G_{0} \oplus G_{n} \longrightarrow G_{0} \oplus G_{1}$.

Proof by Shen criterion:

Key to augment Elliott's proof:
[Wehrung] Suppose $a, b \in\left(G_{0}\right)_{+}$and $a \leq n b, G_{0}$ an ordered group with the Riesz property.
$\exists b_{0}, \ldots, b_{n} \in\left(G_{0}\right)_{+}$such that $b=\sum_{i=0}^{n} b_{i}$ and $a=\sum_{i=1}^{n} i b_{i}$.

Example by Dadarlat and Loring:

$$
\begin{gathered}
G_{0}=\left\{\left.\left(x,\left(y_{i}\right)\right) \in \mathbb{Z}\left[\frac{1}{3}\right] \oplus \mathbb{Z}^{\mathbb{Z}} \right\rvert\, y_{i}-3^{|i|} x \longrightarrow 0\right\} \\
G_{1}=\mathbb{Z} / 2
\end{gathered}
$$

How many ways can we equip

$$
G_{0} \xrightarrow[y_{i} \mapsto b_{i}]{y_{\mapsto}}\left\{\left(a, b_{i}, c\right) \in \mathbb{Z} / 2 \oplus(\mathbb{Z} / 2)^{\mathbb{Z}} \oplus \mathbb{Z} / 2 \mid b_{i} \longrightarrow a\right\} \xrightarrow{c \mapsto z} G_{1} ?
$$

For any $\left(\epsilon_{i}\right) \in(\mathbb{Z} / 2)^{\mathbb{Z}}$ we may take the order given by

$$
\left(\left(x, y_{i}\right),\left(a,\left(b_{i}\right), c\right)\right) \geq 0 \Longleftrightarrow\left\{\begin{array}{l}
x>0 \text { or }[x=0, a=0, c=0] \\
y_{i}>0 \text { or }\left[y_{i}=0, b_{i}+\epsilon_{i} c=0\right]
\end{array}\right.
$$

This gives uncountably many nonisomorphic invariants!

Range [E-Toms] The complete invariant ranges over all exact complexes

$$
G_{0} \longrightarrow G_{0} \otimes \mathbb{Q} \stackrel{\tilde{\rho}}{\rightarrow} G_{\infty} \xrightarrow{\widetilde{\beta}} G_{1}
$$

where G_{∞} is pure torsion, $\operatorname{im} \widetilde{\beta}=\operatorname{tor} G_{1}$ and

- $G_{0} \oplus G_{1}$ is a graded dimension group with torsion
- $\left(G_{0} \otimes \mathbb{Q}\right) \oplus G_{\infty}$ is an ordered group
- The inherited order on $\left(G_{0} \otimes \mathbb{Q}\right) \oplus \operatorname{im} \widetilde{\rho} \subseteq\left(G_{0} \otimes \mathbb{Q}\right) \oplus G_{\infty}$ equals the order induced by id $\oplus \tilde{\rho}$
- The inherited order on $G_{0} \oplus \operatorname{im} \widetilde{\beta} \subseteq G_{0} \oplus G_{1}$ equals the order induced by id $\oplus \widetilde{\beta}$

We are not done yet!

$\mathbf{A H} \cap \mathbf{R} \mathbf{R Z} \cap \mathbf{S D G} \cap\left\{\right.$ tor $\left.K_{1}=0\right\} \subsetneq \mathbf{A D} \cap \mathbf{R R Z} \cap\left\{\right.$ tor $\left.K_{1}=0\right\}!$

[Dadarlat-E] When A is $\mathbf{A H}$ of real rank zero we have

$$
\begin{aligned}
& K_{0}(A) \oplus K_{0}(A) \xrightarrow{\mathrm{id} \oplus \rho} K_{0}(A) \oplus K_{0}(A ; \mathbb{Z} / n) \\
& K_{0}(A) \oplus \frac{K_{0}(A)}{n K_{0}(A)+\operatorname{Inf} K_{0}(A),}
\end{aligned}
$$

Range unknown!

$\mathbf{A S H}=\mathbf{A}\left\langle\left\langle C(X), \mathbb{I}_{2}^{\sim}, \mathbb{I}_{3}^{\tilde{3}}, \mathbb{I}_{4}^{\sim}, \ldots\right\rangle\right\rangle$

Complete invariant [Dadarlat-Gong] Unital ASH algebras of real rank zero and with slow dimension growth are classified up to isomorphism by

$$
\left[\underline{\mathbf{K}}(-), \underline{\mathbf{K}}(-)_{+}, \wedge,[1]\right]
$$

Subrange [E-Toms] As above when tor $K_{1}=0$.

General range unknown!

