Classifying graph C*-algebras

Søren Eilers eilers@math.ku.dk

Department of Mathematical Sciences University of Copenhagen

NBFAS 05.03.10

3 Ideals and K-theory

4 Conjecture

Finitely many ideals

Observation (cf. Jordan-Hölder)

When the C^* -algebra A has finitely many ideals a finite decomposition series

$$0 = I_0 \triangleleft I_1 \triangleleft \cdots \triangleleft I_n = A, \qquad I_j/I_{j-1} \text{ simple}$$

exists with $(I_1/I_0, I_2/I_1, \dots, I_n/I_{n-1})$ unique up to isomorphism and permutation.

Of course, the decomposition series does **not** determine A. But suppose the I_j/I_{j-1} are all classifiable by K-theory, is the same then true for A?

$\mathbb{B}(H)$: A C*-algebra with one non-trivial ideal

\mathbb{K} is AF

The compacts form an *AF* algebra, i.e. for any finite set $a_1, \ldots a_\ell$ and $\epsilon > 0$ there is a finite-dimensional algebra $F \subseteq \mathbb{K}$ with $\|a_i - f_i\| < \epsilon$ for some $f_i \in F$.

$\mathbb{B}(H)/\mathbb{K}$ is purely infinite

The Calkin algebra is purely infinite, i.e. for any $x, y \in \mathbb{B}(H)/\mathbb{K}$ with $x \neq 0$ there exist elements *a*, *b* such that

$$y = axb$$

Further properties

Real rank zero

 $\mathbb{B}(H)$, \mathbb{K} and $\mathbb{B}(H)/\mathbb{K}$ have real rank zero, i.e. for any self-adjoint element *a* and any $\epsilon > 0$ there is a self-adjoint element *f* with finite spectrum such that $||a - f|| < \epsilon$.

Separability and nuclearity

 \mathbb{K} is separable and nuclear. Neither of $\mathbb{B}(H)$ and $\mathbb{B}(H)/\mathbb{K}$ are.

Graph algebras

Graph algebras

Any countable graph $G = (E^0, E^1)$ defines a C^* -algebra $C^*(G)$ given as a universal C^* -algebra by **projections** $\{p_v : v \in E^0\}$ and **partial isometries** $\{s_e : e \in E^1\}$ subject to the *Cuntz-Krieger relations*:

•
$$p_v p_w = 0$$
 when $v \neq w$
• $(s_e s_e^*)(s_f s_f^*) = 0$ when $e \neq f$
• $s_e^* s_e = p_{r(e)}$ and $s_e s_e^* \leq p_{s(e)}$
• $p_v = \sum_{s(e)=v} s_e s_e^*$ for every v with $0 < |\{e \mid s(e) = v\}| < \infty$.

Singular vertices

When $\{e \mid s(e) = v\} = \emptyset$ we say that v is a **sink**. When $|\{e \mid s(e) = v\}| = \infty$ we say that v is an **infinite emitter**. In either case, we say that v is **singular**.

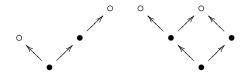
C*-equivalence of graphs

For which pairs of graphs do we have

$C^*(G)\otimes \mathbb{K}\simeq C^*(H)\otimes \mathbb{K}?$

Theorem (Kumjian-Pask-Raeburn)

 $C^*(G)$ is AF precisely when G has no cycles, i.e. is a forest.

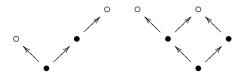


Subsubcase: Finite forest

Theorem

The following are equivalent for finite forests G and H

- $C^*(G) \otimes \mathbb{K} \simeq C^*(H) \otimes \mathbb{K}$
- G and H have the same number of leaves



Subsubcase: A matroid tree

Consider the case where $G = G[n_i]$ is given by a sequence of integers n_i describing an infinite tree

$$\bullet \xrightarrow{n_1} \bullet \xrightarrow{n_2} \bullet \xrightarrow{n_3} \bullet \xrightarrow{n_4} \cdots$$

Theorem

The following are equivalent

- $C^*(G[n_i]) \otimes \mathbb{K} \simeq C^*(G[m_i]) \otimes \mathbb{K}$
- $\exists j: x \mid \prod_{i=1}^{j} n_i \iff \exists j: x \mid \prod_{i=1}^{j} m_i$

Subcase: Purely infinite

Theorem (Cuntz-Krieger, an Huef-Raeburn)

When G is a finite and strongly connected graph then the following are equivalent

- C*(G) has finitely many ideals
- 2 $C^*(G)$ is simple
- C*(G) has real rank zero
- $C^*(G)$ is purely infinite
- G is not a cycle

Preamble	Graph algebras	Ideals and K-theory	Conjecture	Partial verification

Theorem (Franks, Cuntz, Rørdam)

The relation induced on the class of finite and strongly connected graphs by stable isomorphism of the associated graph C^* -algebra is the smallest equivalence relation containing

Edge expansion	$\bullet \to \bullet$	\rightsquigarrow	$\bullet \to \circ \to \bullet$	
State splitting	* *	~~>	$\bullet \longrightarrow \circ \Longrightarrow \bullet$	
Cuntz splice	•	$\sim \rightarrow$	●≈°≈°	

Preamble	Graph algebras	Ideals and K-theory	Conjecture	Partial verification
Unifyin	g invariant			

Theorem

A graph C^* -algebra is separable and nuclear.

Theorem (Kumjian-Pask-Raeburn)

A simple graph C*-algebra is either AF or purely infinite.

Theorem (Elliott, Kirchberg-Phillips)

 $K_*(-)$ is a complete invariant for stable isomorphism of graph C^* -algebras which are simple, or AF.

Preamble	Graph algebras	Ideals and K-theory	Conjecture	Partial verification

Theorem (Hong-Szymański)

 $C^*(G)$ has real rank zero precisely when no cycle in G is unique.

Corollary

If $C^*(G)$ has finitely many ideals, then $C^*(G)$ has real rank zero.

Hereditary

$$F^0 \subseteq E^0$$
 is hereditary when $s(e) \in F^0 \Rightarrow r(e) \in F^0$

Saturated

 $F^0 \subseteq E^0$ is **saturated** when for any non-singular $v \notin F^0$ there is an edge *e* with r(e) = v, $s(e) \notin F^0$.

Breaking vertex

An infinite emitter v is a **breaking vertex** for F^0 if

$$0 < |\{e \in E^1 \mid r(e) = v, s(e) \notin F^0\}| < \infty$$

Ideal structure

Theorem

When $C^*(G)$ has real rank zero there is a one-to-one correspondance between the ideals of $C^*(G)$ and pairs (F^0, B^0) chosen such that

- F⁰ is hereditary
- F⁰ is saturated
- B^0 is a set of breaking vertices for F^0

Theorem

The ideal corresponding to (F^0, \emptyset) is stably isomorphic to $C^*(H)$ where H is the subgraph of G with F^0 as vertex set.

Color coding

G	$C^*(G)$	Legend
Cofinal tree	Simple <i>AF</i> al- gebra	
Finite, strongly connected graph (not a cycle)	Simple Cuntz- Krieger algebra	
Graph with a cycle, no unique cycles, and only trivial heredi- tary and saturated subsets	Simple purely infinite algebra	

When G is presented by an adjacency matrix in block form

with singular vertices in the last row and column blocks, then

$$\mathcal{K}_0(\mathcal{C}^*(\mathcal{G})) = \operatorname{cok} \begin{bmatrix} \mathcal{A}^t - 1 \\ \alpha^t \end{bmatrix} \qquad \mathcal{K}_1(\mathcal{C}^*(\mathcal{G})) = \operatorname{ker} \begin{bmatrix} \mathcal{A}^t - 1 \\ \alpha^t \end{bmatrix}$$

 $\begin{bmatrix} A & \alpha \\ * & * \end{bmatrix}$

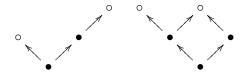
Subsubcase: Finite forest

Theorem

The following are equivalent for finite forests G and H

•
$$C^*(G)\otimes \mathbb{K}\simeq C^*(H)\otimes \mathbb{K}$$

• G and H have the same number of leaves



$$\begin{array}{ll} \textit{K-theory} \\ & \textit{K}_0(\textit{C}^*(\textit{G})) = \mathbb{Z}^{\# \textsf{leaves}} & \textit{K}_1(\textit{C}^*(\textit{G})) = 0 \end{array}$$

Subsubcase: A matroid tree

Consider the case where $G = G[n_i]$ is given by a sequence of integers n_i describing an infinite tree

$$\bullet \xrightarrow{n_1} \bullet \xrightarrow{n_2} \bullet \xrightarrow{n_3} \bullet \xrightarrow{n_4} \cdots$$

Theorem

•
$$C^*(G[n_i]) \otimes \mathbb{K} \simeq C^*(G[m_i]) \otimes \mathbb{K}$$

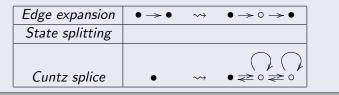
• $\exists j : x | \prod_{i=1}^j n_i \iff \exists j : x | \prod_{i=1}^j m_i$

K-theory

$$\mathcal{K}_0(C^*(G[n_i])) = \lim (\mathbb{Z} \xrightarrow{n_1} \mathbb{Z} \xrightarrow{n_2} \mathbb{Z} \xrightarrow{n_2} \cdots)$$
$$\mathcal{K}_1(C^*(G[n_i])) = 0$$

Theorem (Franks, Cuntz, Rørdam)

The relation induced on the class of finite and strongly connected graphs by stable isomorphism of the associated graph C^* -algebra is the smallest equivalence relation containing



K-theory

$$egin{aligned} & \mathcal{K}_0(\mathcal{C}^*(\mathcal{G}_A)) = \operatorname{cok}(\mathcal{A}^t - 1) \ & \mathcal{K}_1(\mathcal{C}^*(\mathcal{G}_A)) = \operatorname{ker}(\mathcal{A}^t - 1) = \operatorname{cok}(\mathcal{A}^t - 1)/\operatorname{tor}(\operatorname{cok}(\mathcal{A}^t - 1)) \end{aligned}$$

Preamble	Graph algebras	Ideals and K-theory	Conjecture	Partial verification

G	$K_0(G)$	$K_0(G)_+$	Ideals
• •	\mathbb{Z}^2	$\{(x,y)\mid x\geq 0, y\geq 0\}$	
$\bullet \longrightarrow \bullet \longrightarrow \cdots$	\mathbb{Z}^2	$\{(x,y) \mid x + \frac{\sqrt{5}-1}{2}y \ge 0\}$	

Preamb	Graph	

raph algebras

Ideals and K-theory

Conjecture

G	$K_0(G)$	$K_0(G)_+$	Ideals
	\mathbb{Z}^2	\mathbb{Z}^2	
	\mathbb{Z}^2	\mathbb{Z}^2	

Preamble	Graph algebras	Ideals and K-theory	Conjecture	Partial verifica
----------	----------------	---------------------	------------	------------------

Theorem (Drinen-Tomforde, Carlsen-E-Tomforde)

For
$$C^*(G)$$
 given by $\begin{bmatrix} A & \alpha & 0 & 0 \\ * & * & 0 & 0 \\ X & \xi & B & \beta \\ * & * & * & * \end{bmatrix}$ the six-term exact sequence in *K*-theory becomes

Filtrated K-theory

$\mathfrak{K}(A)$:

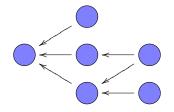
The collection of all six term exact sequences

whenever $I \triangleleft J \triangleleft K \triangleleft A$.

Remark

Each subquotient may occur several times, in which case the K-groups of the various six-term exact sequences are identified. Thus the invariant is also called the "K-web".

Preamble	Graph algebras	Ideals and K-theory	Conjecture	Partial verification
Cuntz-ł	Krieger			



Theorem (Restorff)

When G and H are finite graphs with no unique cycles, no sinks, and no sources, then the following are equivalent

- $C^*(G) \otimes \mathbb{K} \simeq C^*(H) \otimes \mathbb{K}$
- $\mathfrak{K}(C^*(G)) \simeq \mathfrak{K}(C^*(H))$

Fundamental question

$\mathfrak{K}(A)_+$:

As above, but with each K_0 -group

$$K_0(J/I) \longrightarrow K_0(K/I) \longrightarrow K_0(K/J)$$

considered as an ordered group.

Working conjecture

 $\mathfrak{K}(-)_+$ is a complete invariant for stable isomorphism of all graph $C^*\text{-}\mathsf{algebras}$ with finitely many ideals.

Theorem (E-Tomforde)

 $\mathfrak{K}(-)_+$:

is a complete invariant up to stable isomorphism for the class of graph algebras with precisely one non-trivial ideal.

UCT approach

Theorem (Kirchberg)

Any $\alpha \in KK_X(A, B)^{-1}$ induces a stable isomorphism between A and B when these are (non-simply) purely infinite and nuclear with Prim(A) = Prim(B) = X.

Theorem (Meyer-Nest)

When A, B are in the bootstrap class and $p.\dim(\mathfrak{K}(A)) \leq 1$ we have a UCT

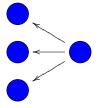
$$0 \longrightarrow \mathsf{Ext}(\mathfrak{K}(A), \mathfrak{K}(B)) \longrightarrow \mathsf{KK}_X(A, B) \longrightarrow \mathsf{Hom}(\mathfrak{K}(A), \mathfrak{K}(B)) \longrightarrow 0$$

Preamble	Graph algebras	Ideals and K-theory	Conjecture	Partial verification

Corollary (Meyer-Nest, Köhler-NN)

 $\mathfrak{K}(-)$ is a complete invariant for purely infinite graph algebras of the form

Preamble	Graph algebras	Ideals and K-theory	Conjecture



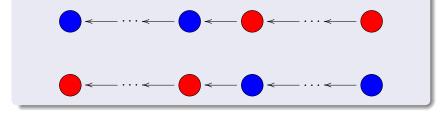
Problem

For a certain purely infinite C^* -algebra A with 7 ideals, p. dim $(\mathfrak{K}(A)) > 1$. Consequently, $\mathfrak{K}(-)$ is **not** a complete invariant for all nuclear, purely infinite C^* -algebras in the bootstrap class with real rank zero.

However, the K-theory of this example is not obtainable by graph algebras.

Theorem (E-Restorff-Ruiz)

 $\mathfrak{K}(-)_+$ is a complete invariant for the class of graph algebras with finite linear ideal lattices of the form:



Theorem (E-Restorff-Ruiz)

 $\mathfrak{K}(-)_+$ is a complete invariant for the class of graph algebras with finite linear ideal lattices when for all subquotients we have

$$K_0(I_j/I_{j-1}) = \mathbb{Z}^k$$
 $K_1(I_j/I_{j-1}) = 0$