Non-simple C*-algebras associated to minimal dynamics*

Toke M. Carlsen and Søren Eilers

Mittag-Leffler Institutet, September 11, 2003

*This is a provocative title!

A substitution

 $\omega: \{1, 2, 3, 4, 5\} \longrightarrow \{1, 2, 3, 4, 5\}^{\sharp}$

given by

$\omega(1)$	=	123514
$\omega(2)$	=	124
$\omega(3)$	=	13214
$\omega(4)$	=	14124
$\omega(5)$	=	15214

The fixed point u

 \cdots 12351212414124.123514124132141521412 \cdots satisfies $\omega(u) = u$. And it makes sense to define

$$\underline{\mathsf{X}}_{\omega} = \overline{\{\sigma^n(u) \mid n \in \mathbb{Z}\}}$$

A dynamical system

The definition

$$\underline{\mathsf{X}}_{\tau} = \overline{\{\sigma^n(u) \mid n \in \mathbb{Z}\}}$$

makes sense for a general *primitive* substitution τ , provided that ones allows $\tau^m(u) = u$.

The dynamical system $(\underline{X}_{\tau}, \sigma)$ will be minimal (all orbits dense).

Problem How does one determine from τ and v whether

$$\underline{X}_{\tau} \simeq \underline{X}_{\upsilon} \qquad \text{[conjugacy]}$$

or

$$\underline{X}_{\tau} \sim_{FE} \underline{X}_{\upsilon}$$
 [flow equivalence]?

Some substitutions

 $\tau_1(\aleph) = \aleph \Box \aleph \qquad \tau_1(\Box) = \Box \aleph \aleph \Box$

$$\tau_{2}(\alpha) = \alpha\beta \qquad \tau_{2}(\beta) = \alpha\beta\gamma\delta\epsilon \qquad \tau_{2}(\gamma) = \alpha\beta$$

$$\tau_{2}(\delta) = \gamma\delta\epsilon \qquad \tau_{2}(\epsilon) = \alpha\beta\gamma\delta\epsilon$$

$$au_3(1) = 1212345$$

 $au_3(2) = 12123451234512345$
 $au_3(3) = 1212345$ $au_3(4) = 1234512345$
 $au_3(5) = 12123451234512345$

Abelianization

To a substitution τ one associates the $|\mathfrak{a}| \times |\mathfrak{a}|$ matrix \mathbf{A}_{τ} given by

 $(\mathbf{A}_{\tau})_{a,b} = \#$ of occurrences of b in $\tau(a)$

When au is aperiodic, primitive and proper*,

$$\varinjlim(\mathbb{Z}^{|\mathfrak{a}|} \xrightarrow{\mathbf{A}_{\tau}} \mathbb{Z}^{|\mathfrak{a}|} \xrightarrow{\mathbf{A}_{\tau}} \cdots)$$

as an ordered group, is an invariant for conjugacy and flow equivalence.

Theorem [Giordano/Putnam/Skau²/Durand/Host]

A complete invariant of strong orbit equivalence!

*No loss of generality

Special words

Consider

$$\pi:\mathfrak{a}^{\mathbb{Z}}\longrightarrow\mathfrak{a}^{\mathbb{N}_0}$$

and its restrictions. Most $x \in \underline{X}_{\tau}$ have the property that one tail determines the other, as in

$$\pi(x) = \pi(y) \Longrightarrow x = y$$

But there is always (up to orbit equivalence) a finite number of exceptions to this rule, as in

6

What is \mathbf{E}_{τ} ?

One may arrange that all special words for τ have the form

$$\cdots \tau^{3}(v)\tau^{2}(v)\tau(v)vu.w\tau(w)\tau^{2}(w)\tau^{3}(w)\cdots$$

with $\tau(u) = vuw$. Denote the rightmost letter of u by a. Represent all (adjusted/cofinal) special words this way. Then

$$(\mathbf{E}_{\tau})_{j,b} = \left(\sum_{k=1}^{p_j+1} e_{\tau,a_k^j,w_k^j}(b)\right) - e_{\tau,\tilde{a}^j,\tilde{w}^j}(b)$$

with

$$e_{\tau,a,w}(b) = \max(0, \#[b, \tau(a)] - \#[b, aw])$$

For the subtitution v the exact sequence $0 \longrightarrow \mathbb{Z}^{n_v}/p_v \mathbb{Z} \longrightarrow K_0(\mathcal{O}_v) \xrightarrow{\rho_*} K_0(C(\underline{X}_v) \rtimes_\sigma \mathbb{Z}) \longrightarrow 0$ becomes

$$0 \longrightarrow \mathbb{Z} \xrightarrow{\begin{bmatrix} 1 \\ 2 \end{bmatrix}} \mathbb{Z} \oplus \mathbb{Z} \begin{bmatrix} \frac{1}{3} \end{bmatrix} \xrightarrow{\begin{bmatrix} -2 & 1 \end{bmatrix}} \mathbb{Z} \begin{bmatrix} \frac{1}{3} \end{bmatrix} \longrightarrow 0$$

But for υ^{-1} we get

$$0 \longrightarrow \mathbb{Z} \xrightarrow{\begin{bmatrix} 1 \\ 0 \end{bmatrix}} \mathbb{Z} \oplus \mathbb{Z} [\frac{1}{3}] \xrightarrow{[0 \ 1]} \mathbb{Z} [\frac{1}{3}] \longrightarrow 0$$

Ultimate example

For the subtitution v the exact sequence $0 \longrightarrow \mathbb{Z}^{n_v}/p_v \mathbb{Z} \longrightarrow K_0(\mathcal{O}_v) \xrightarrow{\rho_*} K_0(C(\underline{X}_v) \rtimes_\sigma \mathbb{Z}) \longrightarrow 0$ becomes

$$0 \longrightarrow \mathbb{Z} \xrightarrow{\begin{bmatrix} 1 \\ 2 \end{bmatrix}} \mathbb{Z} \oplus \mathbb{Z} \begin{bmatrix} \frac{1}{3} \end{bmatrix} \xrightarrow{\begin{bmatrix} -2 & 1 \end{bmatrix}} \mathbb{Z} \begin{bmatrix} \frac{1}{3} \end{bmatrix} \longrightarrow 0$$

But for υ^{-1} we get

$$0 \longrightarrow \mathbb{Z} \xrightarrow{\begin{bmatrix} 1 \\ 0 \end{bmatrix}} \mathbb{Z} \oplus \mathbb{Z} \begin{bmatrix} \frac{1}{3} \end{bmatrix} \xrightarrow{\begin{bmatrix} 0 & 1 \end{bmatrix}} \mathbb{Z} \begin{bmatrix} \frac{1}{3} \end{bmatrix} \longrightarrow 0$$

$C^{\ast}\mbox{-algebras}$ considered by Matsumoto

For any shift space \underline{X} we define $\mathcal{O}_{\underline{X}}$ as the universal C^* -algebra given by generators S_a , $a \in \mathfrak{a}$ and relations

- (i) $\sum_{a \in \mathfrak{a}} S_a S_a^* = 1$
- (ii) $[S_v S_v^*, S_w^* S_w] = 0, v, w \in \mathfrak{a}^{\sharp}$
- (iii) $\{S_v^*S_v\}_{v\in\mathfrak{a}^\sharp}$ relate mutually as do the indicator functions of

$$\{x \in \pi(\underline{\mathsf{X}}) \mid vx \in \pi(\underline{\mathsf{X}})\}$$

where $\pi: \mathfrak{a}^{\mathbb{Z}} \longrightarrow \mathfrak{a}^{\mathbb{N}_0}$

Key results by Matsumoto

- $\mathcal{O}_X \otimes \mathbb{K}$ is a flow invariant
- You know $K_*(\mathcal{O}_{\underline{X}})$ as a group if you know the relations \sim_l on $\pi(\underline{X})$ defined by

$$\begin{array}{l} x \sim_{l} y \\ \Longleftrightarrow \\ \forall v \in \mathfrak{a}^{\sharp}, |v| \leq l : vx \in \pi(\underline{X}) \Longleftrightarrow vy \in \pi(\underline{X}) \\ \text{and the actions} \\ a : [x]_{l+1} \mapsto [ax]_{l}, a \in \mathfrak{a} \end{array}$$

• General simplicity criteria under property (*I*):

$$\forall x \in \pi(\underline{X}) \forall l \in \mathbb{N} \exists y \in \pi(\underline{X}) : \begin{cases} y \neq x \\ y \sim_l x \end{cases}$$

Properties of \mathcal{O}_{τ}

Definition
$$\mathcal{O}_{\tau} = \mathcal{O}_{X_{\tau}}$$

• \mathcal{O}_{τ} is nonsimple, and has a maximal ideal isomorphic to $\mathbb{K}^{n_{\tau}}$ for $n_{\tau} \in \mathbb{N}$. Further,

$$0 \longrightarrow \mathbb{K}^{\mathsf{n}_{\tau}} \longrightarrow \mathcal{O}_{\tau} \xrightarrow{\rho} C(\underline{\mathsf{X}}_{\tau}) \rtimes_{\sigma} \mathbb{Z} \longrightarrow 0$$

• The short exact sequence induces

$$\begin{array}{c} \mathbb{Z}^{\mathsf{n}_{\tau}} \longrightarrow K_{0}(\mathcal{O}_{\tau}) \xrightarrow{\rho_{*}} K_{0}(C(\underline{X}_{\tau}) \rtimes_{\sigma} \mathbb{Z}) \\ \mathbb{P}_{\tau} \uparrow & \downarrow \\ \mathbb{Z} \longleftarrow 0 \longleftarrow 0 \end{array}$$
for $\mathsf{p}_{\tau} \in \mathbb{N}^{\mathsf{n}_{\tau}}.$

• The order on $K_0(\mathcal{O}_{\tau})$ is given by

$$g \ge \mathsf{0} \Longleftrightarrow
ho_*(g) \ge \mathsf{0}$$

Complete desciption

Theorem [CE] Let τ be a primitive, aperiodic, proper^{*} and elementary[†] substitution. For suitable $n_{\tau} \times |\mathfrak{a}|$ matrix \mathbf{E}_{τ} we define

$$\widetilde{\mathbf{A}}_{\tau} = \begin{bmatrix} \mathbf{A}_{\tau} & \mathbf{0} \\ \mathbf{E}_{\tau} & \mathbf{Id} \end{bmatrix}$$
$$H_{\tau} = \mathbb{Z}^{\mathbf{n}_{\tau}} / \mathbf{p}_{\tau} \mathbb{Z}$$

and have

$$K_0(\mathcal{O}_{\tau}) = \varinjlim(\mathbb{Z}^{|\mathfrak{a}|} \oplus H_{\tau}, \widetilde{\mathbf{A}}_{\tau})$$

as an ordered group, where $\mathbb{Z}^{|\mathfrak{a}|} \oplus H_{\tau}$ is ordered by

$$(x,y) \ge 0 \iff x \ge 0$$

The constituent quantities n_{τ} , p_{τ} and \hat{A}_{τ} are computable.

*No loss of generality †No loss of generality