Non-simple C^{*}-algebras associated to minimal dynamics*

Toke M. Carlsen and Søren Eilers

Mittag-Leffler Institutet, September 11, 2003
*This is a provocative title!

A substitution

$$
\omega:\{1,2,3,4,5\} \longrightarrow\{1,2,3,4,5\}^{\sharp}
$$

given by

$$
\begin{aligned}
\omega(1) & =123514 \\
\omega(2) & =124 \\
\omega(3) & =13214 \\
\omega(4) & =14124 \\
\omega(5) & =15214
\end{aligned}
$$

The fixed point u
$\cdots 12351212414124.123514124132141521412 \cdots$
satisfies $\omega(u)=u$. And it makes sense to define

$$
\underline{\mathrm{X}}_{\omega}=\overline{\left\{\sigma^{n}(u) \mid n \in \mathbb{Z}\right\}}
$$

A dynamical system

The definition

$$
\underline{X}_{\tau}=\overline{\left\{\sigma^{n}(u) \mid n \in \mathbb{Z}\right\}}
$$

makes sense for a general primitive substitution τ, provided that ones allows $\tau^{m}(u)=u$.

The dynamical system ($\underline{\mathrm{X}}_{\tau}, \sigma$) will be minimal (all orbits dense).

Problem How does one determine from τ and v whether

$$
\underline{X}_{\tau} \simeq \underline{X}_{v} \quad \text { [conjugacy] }
$$

or

$$
\underline{\mathrm{X}}_{\tau} \sim_{F E} \underline{\mathrm{X}}_{v} \quad \text { [flow equivalence]? }
$$

Some substitutions

$$
\begin{gathered}
\tau_{1}(\aleph)=\aleph \beth \aleph \quad \tau_{1}(\beth)=\beth \aleph \aleph \beth \\
\tau_{2}(\alpha)=\alpha \beta \quad \tau_{2}(\beta)=\alpha \beta \gamma \delta \epsilon \quad \tau_{2}(\gamma)=\alpha \beta \\
\tau_{2}(\delta)=\gamma \delta \epsilon \quad \tau_{2}(\epsilon)=\alpha \beta \gamma \delta \epsilon \\
\tau_{3}(1)=1212345 \\
\tau_{3}(2)=12123451234512345 \\
\tau_{3}(3)=1212345 \quad \tau_{3}(4)=1234512345 \\
\tau_{3}(5)=12123451234512345 \\
\tau_{4}(a)=a a b a a b a b a b \quad \tau_{4}(b)=a a b a b a b a a b a b a b
\end{gathered}
$$

Abelianization

To a substitution τ one associates the $|\mathfrak{a}| \times|\mathfrak{a}|-$ matrix \mathbf{A}_{τ} given by

$$
\left(\mathbf{A}_{\tau}\right)_{a, b}=\# \text { of occurrences of } b \text { in } \tau(a)
$$

When τ is aperiodic, primitive and proper*,

$$
\xrightarrow{\lim }\left(\mathbb{Z}^{|\mathfrak{a}|} \xrightarrow{\mathbf{A}_{\tau}} \mathbb{Z}^{|\mathfrak{a}|} \xrightarrow{\mathbf{A}_{\tau}} \cdots\right)
$$

as an ordered group, is an invariant for conjugacy and flow equivalence.

Theorem [Giordano/Putnam/Skau ${ }^{2}$ /Durand/Host]

A complete invariant of strong orbit equivalence!
*No loss of generality

Special words

Consider

$$
\pi: \mathfrak{a}^{\mathbb{Z}} \longrightarrow \mathfrak{a}^{\mathbb{N}_{0}}
$$

and its restrictions. Most $x \in \underline{\mathrm{X}}_{\tau}$ have the property that one tail determines the other, as in

$$
\pi(x)=\pi(y) \Longrightarrow x=y
$$

But there is always (up to orbit equivalence) a finite number of exceptions to this rule, as in

What is \mathbf{E}_{τ} ?

One may arrange that all special words for τ have the form

$$
\cdots \tau^{3}(v) \tau^{2}(v) \tau(v) v u . w \tau(w) \tau^{2}(w) \tau^{3}(w) \cdots
$$

with $\tau(u)=v u w$. Denote the rightmost letter of u by a. Represent all (adjusted/cofinal) special words this way. Then

$$
\left(\mathbf{E}_{\tau}\right)_{j, b}=\left(\sum_{k=1}^{p_{j}+1} e_{\tau, a_{k}^{j}, w_{k}^{j}}(b)\right)-e_{\tau, \tilde{a}^{j}, \tilde{w}^{j}}(b)
$$

with

$$
e_{\tau, a, w}(b)=\max (0, \#[b, \tau(a)]-\#[b, a w])
$$

For the susbtitution v the exact sequence

$$
0 \longrightarrow \mathbb{Z}^{\mathrm{n}_{v}} / \mathrm{p}_{v} \mathbb{Z} \longrightarrow K_{0}\left(\mathcal{O}_{v}\right) \xrightarrow{\rho_{*}^{*}} K_{0}\left(C\left(\underline{\mathrm{X}}_{v}\right) \rtimes_{\sigma} \mathbb{Z}\right) \longrightarrow 0
$$

becomes

$$
0 \rightarrow \mathbb{Z}^{\left[\frac{1}{2}\right]} \mathbb{Z} \oplus \mathbb{Z}\left[\frac{1}{3}\right] \stackrel{[-21]}{ } \mathbb{Z}\left[\frac{1}{3}\right] \rightarrow 0
$$

But for v^{-1} we get

$$
0 \rightarrow \mathbb{Z}\left[\begin{array}{ll}
{\left[\begin{array}{l}
0
\end{array}\right]} \\
\mathbb{Z}
\end{array} \mathbb{Z}\left[\frac{1}{3}\right] \xrightarrow{\left[\begin{array}{ll}
1
\end{array}\right]} \mathbb{Z}\left[\frac{1}{3}\right] \rightarrow 0\right.
$$

Ultimate example

For the susbtitution v the exact sequence

$$
0 \longrightarrow \mathbb{Z}^{\mathrm{n}_{v}} / \mathrm{p}_{v} \mathbb{Z} \longrightarrow K_{0}\left(\mathcal{O}_{v}\right) \xrightarrow{\rho_{*}} K_{0}\left(C\left(\underline{\mathrm{X}}_{v}\right) \rtimes_{\sigma} \mathbb{Z}\right) \longrightarrow 0
$$ becomes

$$
\left.0 \longrightarrow \mathbb{Z} \stackrel{\left[\frac{1}{2}\right]}{\mathbb{Z}} \oplus \mathbb{Z}\left[\frac{1}{3}\right] \xrightarrow{[-2} 1\right] \mathbb{Z}\left[\frac{1}{3}\right] \longrightarrow 0
$$

But for v^{-1} we get

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{\left[\begin{array}{l}
1 \\
0
\end{array}\right]} \mathbb{Z} \oplus \mathbb{Z}\left[\frac{1}{3}\right] \xrightarrow{\left[\begin{array}{ll}
0 & 1
\end{array}\right]} \mathbb{Z}\left[\frac{1}{3}\right] \longrightarrow 0
$$

C^{*}-algebras considered by Matsumoto

For any shift space \underline{X} we define $\mathcal{O}_{\underline{X}}$ as the universal C^{*}-algebra given by generators $S_{a}, a \in \mathfrak{a}$ and relations
(i) $\sum_{a \in \mathfrak{a}} S_{a} S_{a}^{*}=1$
(ii) $\left[S_{v} S_{v}^{*}, S_{w}^{*} S_{w}\right]=0, v, w \in \mathfrak{a}^{\sharp}$
(iii) $\left\{S_{v}^{*} S_{v}\right\}_{v \in \mathfrak{a}^{\sharp}}$ relate mutually as do the indicator functions of

$$
\{x \in \pi(\underline{\mathrm{X}}) \mid v x \in \pi(\underline{\mathrm{X}})\}
$$

where $\pi: \mathfrak{a}^{\mathbb{Z}} \longrightarrow \mathfrak{a}^{\mathbb{N} o}$

Key results by Matsumoto

- $\mathcal{O}_{\underline{x}} \otimes \mathbb{K}$ is a flow invariant
- You know $K_{*}\left(\mathcal{O}_{\underline{X}}\right)$ as a group if you know the relations \sim_{l} on $\pi(\underline{X})$ defined by

$$
\begin{gathered}
x \sim_{l} y \\
\Longleftrightarrow v \in \mathfrak{a}^{\sharp},|v| \leq l: v x \\
\Longleftrightarrow \pi(\underline{\mathrm{X}}) \Longleftrightarrow v y \in \pi(\underline{\mathrm{X}})
\end{gathered}
$$

and the actions

$$
a:[x]_{l+1} \mapsto[a x]_{l}, a \in \mathfrak{a}
$$

- General simplicity criteria under property (I):

$$
\forall x \in \pi(\underline{\mathrm{X}}) \forall l \in \mathbb{N} \exists y \in \pi(\underline{\mathrm{X}}):\left\{\begin{array}{l}
y \neq x \\
y \sim_{l} x
\end{array}\right.
$$

Properties of \mathcal{O}_{τ}

Definition $\mathcal{O}_{\tau}=\mathcal{O}_{\underline{X}_{\tau}}$

- \mathcal{O}_{τ} is nonsimple, and has a maximal ideal isomorphic to $\mathbb{K}^{\mathbf{n}_{\tau}}$ for $\mathrm{n}_{\tau} \in \mathbb{N}$. Further,

$$
0 \longrightarrow \mathbb{K}^{\mathrm{n}_{\tau}} \longrightarrow \mathcal{O}_{\tau} \xrightarrow{\rho} C\left(\underline{\mathrm{X}}_{\tau}\right) \rtimes_{\sigma} \mathbb{Z} \longrightarrow 0
$$

- The short exact sequence induces

for $\mathrm{p}_{\tau} \in \mathbb{N}^{\mathrm{n}_{\tau}}$.
- The order on $K_{0}\left(\mathcal{O}_{\tau}\right)$ is given by

$$
g \geq 0 \Longleftrightarrow \rho_{*}(g) \geq 0
$$

Complete desciption

Theorem [CE]

Let τ be a primitive, aperiodic, proper* and elementary ${ }^{\dagger}$ substitution. For suitable $\mathrm{n}_{\tau} \times|\mathfrak{a}|-$ matrix \mathbf{E}_{τ} we define

$$
\begin{aligned}
& \tilde{\mathbf{A}}_{\tau}=\left[\begin{array}{cc}
\mathbf{A}_{\tau} & 0 \\
\mathbf{E}_{\tau} & \mathbf{l d}
\end{array}\right] \\
& H_{\tau}=\mathbb{Z}^{\mathbf{n}_{\tau}} / \mathrm{p}_{\tau} \mathbb{Z}
\end{aligned}
$$

and have

$$
K_{0}\left(\mathcal{O}_{\tau}\right)=\xrightarrow{\lim }\left(\mathbb{Z}^{|\mathfrak{a}|} \oplus H_{\tau}, \widetilde{\mathbf{A}}_{\tau}\right)
$$

as an ordered group, where $\mathbb{Z}^{|\mathfrak{a}|} \oplus H_{\tau}$ is ordered by

$$
(x, y) \geq 0 \Longleftrightarrow x \geq 0
$$

The constituent quantities $\mathrm{n}_{\tau}, \mathrm{p}_{\tau}$ and $\widetilde{\mathbf{A}}_{\tau}$ are computable.
*No loss of generality
${ }^{\dagger}$ No loss of generality

