0

Classification of symbolic dynamical systems

Søren Eilers eilers@math.ku.dk

Department of Mathematical Sciences University of Copenhagen

Highlights of AutoMathA, Vienna, 23.11.10 Based on joint work with Béal, Berstel, Perrin; Boyle, Carlsen

Content

- Preliminaries
- 2 Conjugacy
- SFT/conjugacy
- Sofics/conjugacy
- 5 Flow equivalence
- 6 SFT/flow
- Sofics/flow

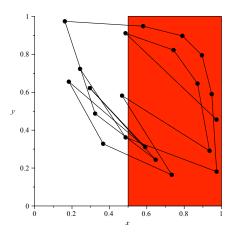
See also

- M.-P. Béal, S. Eilers, J. Berstel, and D. Perrin: Symbolic Dynamics. Chapter for "Handbook in Automata Theory". ArXiV 2010.
- M. Boyle, T.M. Carlsen, and S. Eilers: Flow equivalence of sofic systems. ArXiV 2011 (sorry!).
- D. Lind, B. Marcus: *Introduction to symbolic dynamics and coding*. Cambridge University Press, 1995.

Outline

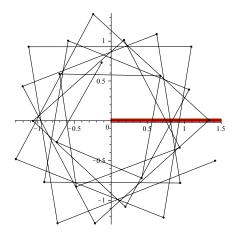
- Preliminaries
- 2 Conjugacy
- 3 SFT/conjugacy
- Sofics/conjugacy
- 5 Flow equivalence
- 6 SFT/flow
- Sofics/flow

Baker's map



 $1011101001010011111100\cdots$

Irrational rotation



 $000100010010010010001000 \cdots$

Symbolic dynamics

Let $\mathfrak a$ be a finite set and equip $\mathfrak a^\mathbb Z$ with the product topology based on the discrete topology on $\mathfrak a$.

Definition

A **shift space** is a subset X of $\mathfrak{a}^{\mathbb{Z}}$ which is closed and closed under the **shift map**

$$\sigma: \mathfrak{a}^{\mathbb{Z}} \to \mathfrak{a}^{\mathbb{Z}} \qquad \sigma((x_i)) = (x_{i+1})$$

Definition

A shift space is **irreducible** if some orbit $\{\sigma^n(x) \mid n \in \mathbb{N}\}$ is dense.

3 constructions

Name	Input	Description	Example
$X^{(W)}$	List of words ${\it W}$	$\begin{array}{ccc} \text{Sequences} & \text{not} \\ \text{containing} & \text{words} \\ \text{from } W \end{array}$	$W = \{11\}$
X_G	$Graph\ G$	Infinite paths on G	$e_1 \bigcirc \bullet \stackrel{e_2}{\underset{e_3}{\longleftarrow}} \bullet$
$L_{\mathcal{A}}$	Automaton ${\cal A}$	Words recognized by ${\cal A}$	

Forbidden word shifts

Let W be a set of finite words on \mathfrak{a} .

Definition

 $\mathsf{X}^{(W)}$ is the shift space $\{x \in \mathfrak{a}^{\mathbb{Z}} \mid \forall i < j : x_i \cdots x_j \notin W\}$

Example

With $\mathfrak{a}=\{0,1\}$ and $W=\{11\}$ the shift space $\mathsf{X}^{(W)}$ contains elements such as

Lemma

For any shift space X, $X = \mathsf{X}^{(W)}$ where W is chosen as the complement of the language

$$\mathcal{L}(X) = \{x_i \cdots x_j \mid x \in X, i < j\}$$

Edge shifts

Let a graph G = (V, E, r, s) be given with

- Vertices V
- Edges E enumerated $\{e_1, \dots e_n\}$
- Range and source maps $r, s : E \rightarrow V$.

Definition

 X_G is the shift space $X^{(W)}$ with alphabet E and

$$W = \{e_i e_j \mid r(e_i) \neq s(e_j)\}\$$

Example

With
$$G = e_1 \bigcirc \bullet \bigcirc \bullet \bigcirc \bullet$$
 , X_G contains elements such as

 $\cdots e_1e_1e_2e_3e_2e_3e_2e_1e_1e_2e_3e_2e_3e_1e_2e_3e_2e_3e_1e_1e_1e_1e_1e_1e_2\cdots$

Labeled edge shifts

Convention

All automata $\mathcal{A}=(V,E,r,s,\mathfrak{a},\lambda)$ are finite and all states are both initial and final. Thus, they are given by the underlying graph (V,E,r,s) and a labelling map $\Lambda:E\to\mathfrak{a}$

Definition

We denote by $X_{\mathcal{A}}$ the edge shift associated to the underlying graph of \mathcal{A} and by

$$\lambda:\mathsf{X}_{\mathcal{A}}\to\mathfrak{a}^{\mathbb{Z}}$$

the labeling map induced by Λ . The shift recognized by \mathcal{A} is L $_{\mathcal{A}}=\lambda(\mathsf{X}_{\mathcal{A}}).$

Labeled edge shifts

Example

With
$$\mathcal{A} = 0$$
 \bullet \bullet the shift space $X_{\mathcal{A}}$ contains elements

such as

Outline

- 1 Preliminaries
- 2 Conjugacy
- SFT/conjugacy
- 4 Sofics/conjugacy
- 5 Flow equivalence
- 6 SFT/flow
- Sofics/flow

Definition

Let $X\subseteq \mathfrak{a}^{\mathbb{Z}}$ and $Y\subseteq \mathfrak{b}^{\mathbb{Z}}$. $\phi:X\to Y$ is the (m,n) sliding block code given by a map

$$\Phi:\mathfrak{a}^{n+1+m}\to\mathfrak{b}$$

when

$$\phi(x)_i = \Phi(x_{i-m} \cdots x_{i+n})$$

Lemma

The following are equivalent:

- ullet ϕ is continuous and shift-commuting
- ullet ϕ is a sliding block code

Definition

X and Y are $\emph{conjugate}$ when there is a bijective sliding block code $\phi:X\to Y$

With \mathcal{A} as above,

$$\lambda: e_1 \bigcirc \bullet \stackrel{e_2}{\underset{e_3}{\longleftarrow}} \bullet \longrightarrow 0 \bigcirc \bullet \stackrel{1}{\underset{0}{\longleftarrow}} \bullet$$

becomes a conjugacy. Indeed, the labeling map is always a (0,0) sliding block code induced by $\Lambda.$ And in this case it has a (1,0) block inverse μ given by

$$00 \mapsto e_1 \qquad 01 \mapsto e_2 \qquad 10 \mapsto e_3$$

For instance,

$$\mu \circ \lambda(\dots e_1 e_2 e_3 e_1 e_1 e_1 e_2 e_3 e_1 \dots) =$$

$$\mu(\dots 010000100\dots) =$$

$$\dots e_2 e_3 e_1 e_1 e_2 e_3 e_1 \dots$$

Multiplicity set

Definition

With a given map $\lambda: X_{\mathcal{A}} \to L_{\mathcal{A}}$ we set

$$\begin{array}{lcl} \widetilde{\mathsf{L}_{\mathcal{A}}} &=& \{x \in \mathsf{L}_{\mathcal{A}} \mid |\lambda^{-1}(\{x\})| > 1\} \\ \widetilde{\mathsf{X}_{\mathcal{A}}} &=& \lambda^{-1}(\widetilde{\mathsf{L}_{\mathcal{A}}}) \end{array}$$

and restrict λ to

$$\widetilde{\lambda}:\widetilde{X_{\mathcal{A}}}\to\widetilde{L_{\mathcal{A}}}$$

Example

With
$$A = 0$$
 \bullet and $B = 1$ \bullet we get $\widetilde{L_A} = \emptyset$ and $\widetilde{L_B} = \{0^\infty\}$.

Shifts of finite type

Definition

A shift space is a *shift of finite type (SFT)* if is has the form $\mathsf{X}^{(W)}$ with W finite.

Lemma

The following are equivalent:

- X is an SFT
- $X \simeq X_G$ for some graph G

Sofic shifts

Definition

A shift space is sofic if is has the form $\mathsf{X}^{(W)}$ with W recognizable.

Lemma

The following are equivalent:

- X is sofic
- $X \simeq \mathsf{X}_{\mathcal{A}}$ for some automaton \mathcal{A}

Theorem

When X is irreducible and sofic, there is a unique deterministic automaton $\mathcal A$ with fewest possible vertices such that $X \simeq \mathsf{X}_{\mathcal A}$. $\mathcal A$ is called the Fischer cover of X.

Classification

The SFT classification problem

Let X and Y be irreducible shifts of finite type given by graphs G and H, respectively. Determine in terms of G and H when X and Y are conjugate.

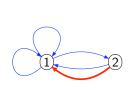
The sofic classification problem

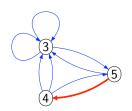
Let X and Y be irreducible sofic shifts given by Fischer automata $\mathcal A$ and $\mathcal B$, respectively. Determine in terms of $\mathcal A$ and $\mathcal B$ when X and Y are conjugate.

Outline

- 1 Preliminaries
- Conjugacy
- SFT/conjugacy
- Sofics/conjugacy
- 5 Flow equivalence
- 6 SFT/flow
- Sofics/flow

State splitting





$$\begin{bmatrix} 2 & 1 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 2 & 0 & 1 \\ 2 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

Theorem (Williams)

Let X_G and X_H be two irreducible SFTs given by graphs with adjacency matrices A and B, respectively. The following conditions are equivalent.

- (i) X_G and X_H are conjugate.
- (ii) There exist nonnegative integral matrices D_i and E_i with

$$A = D_0 E_0, E_0 D_0 = D_1 E_1, \cdots, E_n D_n = B$$

Arsenal of invariants

Real numbers (entropy), power series (zeta function), ordered abelian groups (Dimension group), finitely generated abelian groups (Bowen-Franks groups), C^* -algebras (Cuntz-Krieger algebra),...

4 examples

A	G	$h(X_G)$	$BF(X_G)$
$\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$	C•=•5	4	$(\mathbb{Z}_3,-)$
$\begin{bmatrix} 3 & 1 \\ 3 & 1 \end{bmatrix}$		4	$(\mathbb{Z}_3,-)$
$\begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix}$	C• = •5	$\frac{3+\sqrt{13}}{2}$	$(\mathbb{Z}_3,-)$
$\begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$		4	$(\mathbb{Z},0)$

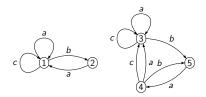
4 examples

A	G	$h(X_G)$	$BF(X_G)$
$\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$		4	$(\mathbb{Z}_3,-)$
$\begin{bmatrix} 3 & 1 \\ 3 & 1 \end{bmatrix}$		4	$(\mathbb{Z}_3,-)$
$\begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix}$	C• @• 5	$\frac{3+\sqrt{13}}{2}$	$(\mathbb{Z}_3,-)$
$\begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$	C•==	4	$(\mathbb{Z},0)$

Outline

- Preliminaries
- 2 Conjugacy
- SFT/conjugacy
- 4 Sofics/conjugacy
- 5 Flow equivalence
- 6 SFT/flow
- Sofics/flow

Symbolic state splitting



$$\begin{bmatrix} a+c & b \\ a & 0 \end{bmatrix} = \begin{bmatrix} a+c & 0 & b \\ 0 & a & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} a+c & 0 & b \\ a+c & 0 & b \\ 0 & a & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a+c & 0 & b \\ 0 & a & 0 \end{bmatrix}$$

Theorem (Nasu)

Let X and Y be two irreducible sofic shifts and let \mathcal{A}, \mathcal{B} be their Fischer automata given by alphabetic adjacency matrices A and B. The following conditions are equivalent.

- (i) $X \simeq Y$
- (ii) There exist nonnegative integral matrices D_i and alphabetic matrices E_i with

$$A = D_0 E_0, E_0 D_0 = D_1 E_1, \cdots, E_n D_n = B$$

(iii)
$$X_{\mathcal{A}} \xrightarrow{\simeq} X_{\mathcal{B}}$$

$$\downarrow^{\lambda_{\mathcal{A}}} \qquad \downarrow^{\lambda_{\mathcal{B}}}$$

$$\downarrow^{\lambda_{\mathcal{B}}} \qquad \downarrow^{\lambda_{\mathcal{B}}}$$

$$\downarrow^{\lambda_{\mathcal{B}}} \qquad \downarrow^{\lambda_{\mathcal{B}}}$$

Arsenal of invariants

Invariants of X_A , invariants of λ , the syntactic graph, ...

Example

With
$$A = 0$$
 \bullet and $B = 1$ \bullet we get $\widetilde{L_A} = \emptyset$ and $\widetilde{L_B} = \{0^\infty\}$.

Hence

$$\begin{array}{c|c}
X_{\mathcal{A}} & \xrightarrow{\simeq} & X_{\mathcal{B}} \\
\lambda_{\mathcal{A}} & & & \downarrow \lambda_{\mathcal{B}} \\
L_{\mathcal{A}} & \xrightarrow{\simeq} & L_{\mathcal{B}}
\end{array}$$

is impossible and $L_A \not\simeq L_B$.

Outline

- 1 Preliminaries
- 2 Conjugacy
- 3 SFT/conjugacy
- 4 Sofics/conjugacy
- 5 Flow equivalence
- 6 SFT/flow
- Sofics/flow

Symbol expansion

Fix $a \in \mathfrak{a}$ and $\star \notin \mathfrak{a}$ and define $\eta : \mathfrak{a}^{\mathbb{Z}} \to (\mathfrak{a} \cup \{\star\})^{\mathbb{Z}}$ as the map inserting a \star after each a:

$$\cdots babbbaba \cdots \mapsto \cdots ba \star bbba \star ba \star \cdots$$

Definition

The " $a \mapsto a\star$ " symbol expansion of a shift space X is the shift space $X_{a\mapsto a\star}=\eta(X)$.

Flow equivalence

Associated to any shift space there is a **suspension flow** given by product topology on

$$SX = \frac{X \times \mathbb{R}}{(x,t) \sim (\sigma(x), t+1)}$$

Definition

X and Y are flow equivalent (written $X \simeq_{fe} Y$) when SX and SY are homeomorphic in a way preserving direction in \mathbb{R} .

Theorem (Parry-Sullivan)

Flow equivalence is the coarsest equivalence relation containing conjugacy and $X \sim X_{a \to a \star}$

Flow classification

Lemma

If $X \simeq_{fe} Y$ and X is SFT, sofic or irreducible, then so is Y.

The SFT flow classification problem

Let X and Y be irreducible shifts of finite type given by graphs G and H, respectively. Determine in terms of G and H when X and Y are flow equivalent.

The sofic flow classification problem

Let X and Y be irreducible sofic shifts given by Fischer automata $\mathcal A$ and $\mathcal B$, respectively. Determine in terms of $\mathcal A$ and $\mathcal B$ when X and Y are flow equivalent.

Outline

- 1 Preliminaries
- 2 Conjugacy
- SFT/conjugacy
- Sofics/conjugacy
- 5 Flow equivalence
- 6 SFT/flow
- Sofics/flow

Flow classifcication of SFTs

Theorem (Franks)

Let X_G and X_H be two irreducible SFTs given by graphs with adjacency matrices A and B, respectively. The following conditions are equivalent.

(i)
$$X_G \simeq_{fe} X_H$$

(ii)

$$\mathbb{Z}^m/(1-A)\mathbb{Z}^m \simeq \mathbb{Z}^n/(1-B)\mathbb{Z}^n$$

and

$$\operatorname{sgn} \det(1 - A) = \operatorname{sgn} \det(1 - B)$$

4 examples

A	G	$BF(X_G)$
$\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$		$(\mathbb{Z}_3,-)$
$\begin{bmatrix} 3 & 1 \\ 3 & 1 \end{bmatrix}$		$(\mathbb{Z}_3,-)$
$ \begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix} $	C• @• 5	$(\mathbb{Z}_3,-)$
$\begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$	C•==	$(\mathbb{Z},0)$

4 examples

A	G	$BF(X_G)$
$\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$	C•=•5	$(\mathbb{Z}_3,-)$
$\begin{bmatrix} 3 & 1 \\ 3 & 1 \end{bmatrix}$		$(\mathbb{Z}_3,-)$
$\begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix}$	C• = •5	$(\mathbb{Z}_3,-)$
$\begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$	€•≅•⋑	$(\mathbb{Z},0)$

Outline

- 1 Preliminaries
- 2 Conjugacy
- 3 SFT/conjugacy
- Sofics/conjugacy
- 5 Flow equivalence
- 6 SFT/flow
- Sofics/flow

Flow classification of sofics

Theorem

Let X and Y be two irreducible sofic shifts and let A, B be their Fischer automata. The following conditions are equivalent.

(i)
$$X \simeq_{fe} Y$$

(ii)
$$SX_{\mathcal{A}} \xrightarrow{\sim_{+}} SX_{\mathcal{B}}$$
 $S\lambda_{\mathcal{A}} \downarrow \qquad \qquad \downarrow S\lambda_{\mathcal{B}}$
 $SL_{\mathcal{A}} \xrightarrow{\sim_{+}} SL_{\mathcal{B}}$

Theorem (Boyle-Carlsen-E)

Let X and Y be two irreducible sofic shift spaces with Fischer automata $\mathcal A$ and $\mathcal B$, respectively, and assume that $\widetilde{\mathsf X}_{\mathcal A}$ and $\widetilde{\mathsf X}_{\mathcal B}$ are both closed. Then X and Y are flow equivalent exactly when the following conditions hold:

$$(1) X_{\mathcal{A}} \simeq_{fe} X_{\mathcal{B}}$$

$$(2) \qquad S\widetilde{X}_{\mathcal{A}} \xrightarrow{N+} S\widetilde{X}_{\mathcal{B}}$$

$$S\widetilde{\lambda}_{\mathcal{A}} \downarrow \qquad \qquad \downarrow S\widetilde{\lambda}_{\mathcal{B}}$$

$$S\widetilde{\lambda}_{\mathcal{A}} \xrightarrow{N+} S\widetilde{\lambda}_{\mathcal{B}}$$

$\lambda:X_\mathcal{A} oL_\mathcal{A}$	$\widetilde{\lambda}:\widetilde{X_{\mathcal{A}}} ightarrow\widetilde{L_{\mathcal{A}}}$
$a,c \bigcirc \bullet \bigcirc \bullet \bigcirc b,d \\ b,c \\ \bullet \bigcirc a,f$	$a \bigcirc \bullet \bigcirc b \bigcirc a$
$a \bigcirc \bullet \bigodot b \bigcirc a,e$	$a \bigcirc \bullet \bigcirc b \bigcirc a$
$a,b \bigoplus \bullet \bigoplus_{e,f} \bullet \bigoplus a,g$	
$a \bigcirc \bullet \bigotimes_{b,c,d} \bullet \bigcirc e,f$	• <u>b</u> •

$\lambda:X_\mathcal{A} oL_\mathcal{A}$	$\lambda: X_{\mathcal{A}} \to L_{\mathcal{A}}$
$a,c \bigcirc \bullet \bigcirc b,d \\ b,c \bigcirc \bullet \bigcirc a,f$	$a \bigcirc \bullet \bigcirc b \bigcirc a$
$a \bigcap \bullet \bigoplus_{b,c,d}^b \bullet \bigcap a,e$	$a \bigcirc \bullet \bigcirc b \bigcirc a$
$a,b \bigcirc \bullet \bigcirc \underbrace{c,d}_{e,f} \bullet \bigcirc a,g$	
$a \bigcirc \bullet \bigoplus_{b,c,d}^b \bullet \bigcirc e,f$	• <u>b</u>

Deciding flow equivalence

Theorem (Boyle-Carlsen-E)

When $X_{\mathcal{A}}$ is an AFT 2-sofic shift, $\widetilde{X}_{\mathcal{A}}$ is an SFT, and the flow class of $\widetilde{\lambda}: \widetilde{X}_{\mathcal{A}} \to \widetilde{L}_{\mathcal{A}}$ may be described as the \mathbb{Z}_2 -equivariant flow class of $\widetilde{X}_{\mathcal{A}}$. There are procedures for doing this in several cases.