Warped crossed products

Søren Eilers and Takeshi Katsura

May 7, 2008

We consider a C^* -dynamical system (A, ϕ) with $\phi : A \to A$ a *-isomorphism. A **covariant representation** of (A, ϕ) into a C^* -algebra is a pair (π, U) such that

$$\pi(\phi(a)) = U\pi(a)U^*.$$

The (full) crossed product $A \rtimes_{\phi} \mathbb{Z}$ is the universal object factorizing all such covariant representations:

A C^* -bimodule X over A (to us) is an A - A bimodule equipped with two inner products

$$\langle \cdot, \cdot \rangle$$
 (\cdot, \cdot)

satisfying axioms such as

$$\begin{aligned} a\langle\xi,\eta\rangle &= \langle a\xi,\eta\rangle & a \in A, \xi,\eta \in X \\ (\xi,\eta)a &= (\xi,\eta a) & a \in A, \xi,\eta \in X \\ \langle\xi,\eta\rangle\zeta &= \xi(\eta,\zeta) & \xi,\eta,\zeta \in X \end{aligned}$$

If $\langle X, X \rangle$ and (X, X) are both total subsets in A se say that X is an **imprimitivity** bimodule (cf. Morita equivalence).

A covariant representation of (A, X) is a pair (π_A, π_X) of representations into some C^* -algebra B such that both module actions and both inner products become the ones inherited from B, i.e.

$$\pi_X(a\xi) = \pi_A(a)\pi_X(\xi) \qquad \pi_X(\xi a) = \pi_X(\xi)\pi_A(a)$$
$$\langle \xi, \eta \rangle = \pi_X(\xi)\pi_X(\eta)^* \qquad (\xi, \eta) = \pi_X(\xi)^*\pi_X(\eta)$$

where $a \in A$, $\xi, \eta \in X$.

Theorem [Abadie, E & Exel 99] There is a universal object $A \rtimes_X \mathbb{Z}$ for covariant representations of bimodules

and A injects into $A \rtimes_X \mathbb{Z}$. Note that with A_{ϕ} the A - A bimodule given as the set A equipped with

$$a \cdot \alpha = a\alpha$$
 $\alpha \cdot a = \alpha \phi(a)$
 $\langle a, b \rangle = ab^*$ $(a, b) = \phi(a^*b)$

we have $A \rtimes_{\phi} \mathbb{Z} = A \rtimes_{A_{\phi}} \mathbb{Z}$. Thus we may consider these universal objects as **generalized crossed products**.

Our motivation for this definition was the following result

Theorem [Abadie, E & Exel 99] If a C^* -algebra B with a circle action χ_z is generated by its zeroth and first spectral subspaces

$$B_0 = \{ b \in B \mid \chi_z(b) = b \} \qquad B_1 = \{ b \in B \mid \chi_z(b) = zb \}$$

then $B = B_0 \rtimes_{B_1} \mathbb{Z}$.

which we then applied to quantum Heisenberg manifolds.

Observation

If B is generated by the first spectral subspace alone, then B_1 is a $B_0 - B_0$ imprimitivity bimodule.

Let us now focus our attention at $A\rtimes_X \mathbb{Z}$ in the case

- A is abelian, say $A = C(\Omega)$,
- X is an A A imprimitivity bimodule.

This means that $X \in Pic(C(\Omega))$, the Picard group of $C(\Omega)$.

Theorem [see Abadie & Exel] For any $C(\Omega) - C(\Omega)$ imprimivity bimodule X there exist

- A homeomorphism $\sigma: \Omega \to \Omega$
- A Hermitian line bundle ${\cal L}$ over Ω

such that $X \simeq \Gamma(\mathcal{L})_{\sigma}$ given as the set of continuous sections

$$\xi: \Omega \to \mathcal{L} \qquad p(\xi(\omega)) = \omega$$

of \mathcal{L} with

$$f \cdot \xi = f\xi \qquad \xi \cdot f = \xi(f \circ \sigma)$$

$$\langle \xi, \eta \rangle(\omega) = \xi(\omega)\overline{\eta(\omega)} \qquad (\xi, \eta)(\omega) = \xi(\sigma(\omega))\overline{\eta(\sigma(\omega))}$$

Hence the generalization obtained is encoded by the Hermitian line bundle.

Definition

Given a triple $(\Omega, \sigma, \mathcal{L})$ as above we call

$$C(\Omega) \rtimes_{\sigma, \mathcal{L}} \mathbb{Z} = C(\Omega) \rtimes_{\Gamma(\mathcal{L})_{\sigma}} \mathbb{Z}$$

a warped crossed product.

Become or cause to become bent or twisted out of shape, typically as a result of the effects of heat or dampness.

Motivating example [Connes & Dubois-Violette] To any *quadratic algebra* \mathcal{A} one may associate **geometric data** $(\Omega, \sigma, \mathcal{L})$ in a way relating \mathcal{A} to $C(\Omega) \rtimes_{\sigma, \mathcal{L}} \mathbb{Z}$.

The geometric data $(F_{\mathbf{u}}, \sigma, \mathcal{L})$ associated to the non-commutative sphere with generic parameter $\mathbf{u} \in \mathbb{T}^3$ yields a warped crossed product $C(F_{\mathbf{u}}) \rtimes_{\sigma, \mathcal{L}} \mathbb{Z}$ which is isomorphic to the mapping cone

$$\{f \in C[0,1] \otimes A_{\eta} \mid f(0) = \beta(f(1))\}$$

with A_{η} the irrational rotation algebra for $\eta \in \mathbb{R} \setminus \mathbb{Q}$ associated to **u** through theta functions, and

$$\beta(u) = u \qquad \beta(v) = u^4 v$$

Note that since A_{η} *-embeds into an AF-algebra so does $C[0, 1] \otimes A_{\eta}$ and hence $C(F_{\mathbf{u}}) \rtimes_{\sigma, \mathcal{L}} \mathbb{Z}$.

With Katsura: Undertake a systematic study of the structure of warped crossed products.

Mutatis mutandis

- Dual action and Takai duality [Abadie]
- Ideal structure
- Nuclearity and UCT
- Pimsner-Voiculescu sequence
- Classification [95%]

Theorem [Pimsner 85]

Consider a dynamical system (Ω, ϕ) . The following are equivalent:

(i) No open set $U \subseteq \Omega$ has the property $\phi(\overline{U}) \subsetneq U$ [Chain recurrence]

(ii) $C(\Omega) \rtimes_{\phi} \mathbb{Z}$ is *AF*-embeddable

(iii) $C(\Omega) \rtimes_{\phi} \mathbb{Z}$ is quasidiagonal

(iv) $C(\Omega) \rtimes_{\phi} \mathbb{Z}$ is stably finite

Theorem [E & Katsura]

Any warped crossed product $C(\Omega) \rtimes_{\sigma, \mathcal{L}} \mathbb{Z}$ is *AF*-embeddable provided that (Ω, σ) is chain recurrent.

Idea of proof: Follow Pimsner but use the gauge invariance lemma to establish injectivity of the map produced by Berg's technique.

Theorem [E & Katsura]

There exists a warped crossed product $C(\Omega) \rtimes_{\sigma, \mathcal{L}} \mathbb{Z}$ which is stably finite even though (Ω, σ) is not chain recurrent.

(i) (Ω, σ) is chain recurrent

(ii) $C(\Omega) \rtimes_{\sigma, \mathcal{L}} \mathbb{Z}$ is *AF*-embeddable

(iii) $C(\Omega) \rtimes_{\sigma, \mathcal{L}} \mathbb{Z}$ is quasidiagonal

(iv) $C(\Omega) \rtimes_{\sigma, \mathcal{L}} \mathbb{Z}$ is stably finite

 $(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (i)$

Theorem [E-Katsura, **95%**] When

- σ is minimal
- $K_0(C(\Omega) \rtimes_{\sigma, \mathcal{L}} \mathbb{Z})$ is dense in $Aff(T(C(\Omega) \rtimes_{\sigma, \mathcal{L}} \mathbb{Z}))$

then $C(\Omega) \rtimes_{\sigma, \mathcal{L}} \mathbb{Z}$ has tracial rank zero and is hence classifiable by *K*-theory.