# Warped crossed products 

Søren Eilers and Takeshi Katsura

May 7, 2008

We consider a $C^{*}$-dynamical system $(A, \phi)$ with $\phi: A \rightarrow A$ a *-isomorphism. A covariant representation of $(A, \phi)$ into a $C^{*}$-algebra is a pair $(\pi, U)$ such that

$$
\pi(\phi(a))=U \pi(a) U^{*}
$$

The (full) crossed product $A \rtimes_{\phi} \mathbb{Z}$ is the universal object factorizing all such covariant representations:


A $C^{*}$-bimodule $X$ over $A$ (to us) is an $A-A$ bimodule equipped with two inner products

$$
\langle\cdot, \cdot\rangle \quad(\cdot, \cdot)
$$

satisfying axioms such as

$$
\begin{aligned}
a\langle\xi, \eta\rangle & =\langle a \xi, \eta\rangle & & a \in A, \xi, \eta \in X \\
(\xi, \eta) a & =(\xi, \eta a) & & a \in A, \xi, \eta \in X \\
\langle\xi, \eta\rangle \zeta & =\xi(\eta, \zeta) & & \xi, \eta, \zeta \in X
\end{aligned}
$$

If $\langle X, X\rangle$ and $(X, X)$ are both total subsets in $A$ se say that $X$ is an imprimitivity bimodule (cf. Morita equivalence).

A covariant representation of $(A, X)$ is a pair $\left(\pi_{A}, \pi_{X}\right)$ of representations into some $C^{*}$-algebra $B$ such that both module actions and both inner products become the ones inherited from $B$, i.e.

$$
\begin{array}{cl}
\pi_{X}(a \xi)=\pi_{A}(a) \pi_{X}(\xi) & \pi_{X}(\xi a)=\pi_{X}(\xi) \pi_{A}(a) \\
\langle\xi, \eta\rangle=\pi_{X}(\xi) \pi_{X}(\eta)^{*} & (\xi, \eta)=\pi_{X}(\xi)^{*} \pi_{X}(\eta)
\end{array}
$$

where $a \in A, \xi, \eta \in X$.

Theorem [Abadie, E \& Exel 99]
There is a universal object $A \rtimes_{X} \mathbb{Z}$ for covariant representations of bimodules

and $A$ injects into $A \rtimes_{X} \mathbb{Z}$. Note that with $A_{\phi}$ the $A-A$ bimodule given as the set $A$ equipped with

$$
\begin{aligned}
a \cdot \alpha=a \alpha & \alpha \cdot a=\alpha \phi(a) \\
\langle a, b\rangle=a b^{*} & (a, b)=\phi\left(a^{*} b\right)
\end{aligned}
$$

we have $A \rtimes_{\phi} \mathbb{Z}=A \rtimes_{A_{\phi}} \mathbb{Z}$. Thus we may consider these universal objects as generalized crossed products.

Our motivation for this definition was the following result

Theorem [Abadie, E \& Exel 99]
If a $C^{*}$-algebra $B$ with a circle action $\chi_{z}$ is generated by its zeroth and first spectral subspaces

$$
B_{0}=\left\{b \in B \mid \chi_{z}(b)=b\right\} \quad B_{1}=\left\{b \in B \mid \chi_{z}(b)=z b\right\}
$$

then $B=B_{0} \rtimes_{B_{1}} \mathbb{Z}$.
which we then applied to quantum Heisenberg manifolds.

## Observation

If $B$ is generated by the first spectral subspace alone, then $B_{1}$ is a $B_{0}-B_{0}$ imprimitivity bimodule.

Let us now focus our attention at $A \rtimes_{X} \mathbb{Z}$ in the case

- $A$ is abelian, say $A=C(\Omega)$,
- $X$ is an $A-A$ imprimitivity bimodule.

This means that $X \in \operatorname{Pic}(C(\Omega))$, the Picard group of $C(\Omega)$.

Theorem [see Abadie \& Exel]
For any $C(\Omega)-C(\Omega)$ imprimivity bimodule $X$ there exist

- A homeomorphism $\sigma: \Omega \rightarrow \Omega$
- A Hermitian line bundle $\mathcal{L}$ over $\Omega$
such that $X \simeq \Gamma(\mathcal{L})_{\sigma}$ given as the set of continuous sections

$$
\xi: \Omega \rightarrow \mathcal{L} \quad p(\xi(\omega))=\omega
$$

of $\mathcal{L}$ with

$$
\begin{array}{cl}
f \cdot \xi=f \xi & \xi \cdot f=\xi(f \circ \sigma) \\
\langle\xi, \eta\rangle(\omega)=\overline{\xi(\omega) \overline{\eta(\omega)}} & (\xi, \eta)(\omega)=\xi(\sigma(\omega)) \overline{\eta(\sigma(\omega))}
\end{array}
$$

Hence the generalization obtained is encoded by the Hermitian line bundle.

## Definition

Given a triple ( $\Omega, \sigma, \mathcal{L}$ ) as above we call

$$
C(\Omega) \rtimes_{\sigma, \mathcal{L}} \mathbb{Z}=C(\Omega) \rtimes_{\Gamma(\mathcal{L})_{\sigma}} \mathbb{Z}
$$

a warped crossed product.

Become or cause to become bent or twisted out of shape, typically as a result of the effects of heat or dampness.

Motivating example [Connes \& Dubois-Violette]
To any quadratic algebra $\mathcal{A}$ one may associate geometric data $(\Omega, \sigma, \mathcal{L})$ in a way relating $\mathcal{A}$ to $C(\Omega) \rtimes_{\sigma, \mathcal{L}} \mathbb{Z}$.

The geometric data ( $F_{\mathbf{u}}, \sigma, \mathcal{L}$ ) associated to the non-commutative sphere with generic parameter $\mathbf{u} \in \mathbb{T}^{3}$ yields a warped crossed product $C\left(F_{\mathbf{u}}\right) \rtimes_{\sigma, \mathcal{L}} \mathbb{Z}$ which is isomorphic to the mapping cone

$$
\left\{f \in C[0,1] \otimes A_{\eta} \mid f(0)=\beta(f(1))\right\}
$$

with $A_{\eta}$ the irrational rotation algebra for $\eta \in \mathbb{R} \backslash \mathbb{Q}$ associated to u through theta functions, and

$$
\beta(u)=u \quad \beta(v)=u^{4} v
$$

Note that since $A_{\eta} *$-embeds into an $A F$-algebra so does $C[0,1] \otimes$ $A_{\eta}$ and hence $C\left(F_{\mathbf{u}}\right) \rtimes_{\sigma, \mathcal{L}} \mathbb{Z}$.

With Katsura: Undertake a systematic study of the structure of warped crossed products.

## Mutatis mutandis

- Dual action and Takai duality [Abadie]
- Ideal structure
- Nuclearity and UCT
- Pimsner-Voiculescu sequence
- Classification [95\%]

Theorem [Pimsner 85]
Consider a dynamical system ( $\Omega, \phi$ ). The following are equivalent:
(i) No open set $U \subseteq \Omega$ has the property $\phi(\bar{U}) \subsetneq U$ [Chain recurrence]
(ii) $C(\Omega) \rtimes_{\phi} \mathbb{Z}$ is $A F$-embeddable
(iii) $C(\Omega) \rtimes_{\phi} \mathbb{Z}$ is quasidiagonal
(iv) $C(\Omega) \rtimes_{\phi} \mathbb{Z}$ is stably finite

Theorem [E \& Katsura]
Any warped crossed product $C(\Omega) \rtimes_{\sigma, \mathcal{L}} \mathbb{Z}$ is $A F$-embeddable provided that $(\Omega, \sigma)$ is chain recurrent.

Idea of proof: Follow Pimsner but use the gauge invariance lemma to establish injectivity of the map produced by Berg's technique.

Theorem [E \& Katsura]
There exists a warped crossed product $C(\Omega) \rtimes_{\sigma, \mathcal{L}} \mathbb{Z}$ which is stably finite even though $(\Omega, \sigma)$ is not chain recurrent.

(i) $(\Omega, \sigma)$ is chain recurrent
(ii) $C(\Omega) \rtimes_{\sigma, \mathcal{L}} \mathbb{Z}$ is $A F$-embeddable
(iii) $C(\Omega) \rtimes_{\sigma, \mathcal{L}} \mathbb{Z}$ is quasidiagonal
(iv) $C(\Omega) \rtimes_{\sigma, \mathcal{L}} \mathbb{Z}$ is stably finite
(i) $\Rightarrow$ (ii) $\Rightarrow$ (iii) $\Rightarrow$ (iv) $\nRightarrow$ (i)

Theorem [E-Katsura, 95\%]
When

- $\sigma$ is minimal
- $K_{0}\left(C(\Omega) \rtimes_{\sigma, \mathcal{L}} \mathbb{Z}\right)$ is dense in $\operatorname{Aff}\left(T\left(C(\Omega) \rtimes_{\sigma, \mathcal{L}} \mathbb{Z}\right)\right)$
then $C(\Omega) \rtimes_{\sigma, \mathcal{L}} \mathbb{Z}$ has tracial rank zero and is hence classifiable by $K$-theory.

