The complete classification of unital graph C^* -algebras

Søren Eilers eilers@math.ku.dk

Department of Mathematical Sciences University of Copenhagen

August 26, 2016

- Cuntz-Krieger algebras
- 2 Unital graph algebras
- 3 Geometric approach
- Quantum lens spaces

1 Cuntz-Krieger algebras

- 2 Unital graph algebras
- 3 Geometric approach
- Quantum lens spaces
- 5 Further results

Cuntz-Krieger 1980

A Class of C*-Algebras and Topological Markov Chains

265

4. Flow Equivalence

Topological Markov chains are said to be flow equivalent if their suspension flows at on spaces that are homeomorphic under homeomorphisms that respect the orientation of the orbits [11]. Equivalently they are flow equivalent if they induce isomorphic chains on some closed open subset, that is, if they are Kakutani equivalent. Parry and Sullivan have given a description of flow equivalence it terms of a matrix operation [11]. This description leads to a sort of instant computational proof of the invariance of the pair ($\vec{e}_{\gamma}, \vec{x}$) under flow equivalence. We want to give this proof here. We point out, however, that a conceptual proof of this fact is also possible if one exploits the circumstance that \vec{e}_{γ} arises as a crossed product.

4.1. Theorem. If T_1 and T_2 are flow equivalent then

 $(\bar{\mathcal{O}}_{T_1}, \bar{\mathcal{D}}) \sim (\bar{\mathcal{O}}_{T_2}, \bar{\mathcal{D}}).$

Proof. From the transition matrix $A = (a_{ij})_{1 \le i, j \le n}$ form the transition matrix

 $\tilde{A} = \begin{pmatrix} 0 & a_{11} & \dots & a_{1n} \\ 1 & 0 & \dots & 0 \\ 0 & a_{21} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & a_{n1} & \dots & a_{nn} \end{pmatrix}.$

According to Parry and Sullivan, to prove the theorem it is enough to prove that

$$(\bar{\mathcal{O}}_{\bar{\sigma}_{A}},\bar{\mathcal{D}})\!\sim\!(\bar{\mathcal{O}}_{\bar{\sigma}_{\bar{A}}},\bar{\mathcal{D}}).$$

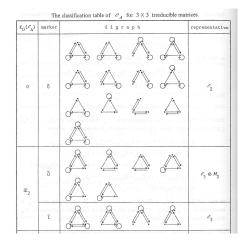
Unital graph algebras

Geometric approach

Quantum lens space

Further results

Enomoto-Fujii-Watatani 1981



Rørdam 1995

The class of all simple Cuntz-Krieger algebras is classified by K-theory. This is proved using a theorem of Cuntz, see the appendix, and the two Cuntz-Krieger algebras O_2 and O_2 , where O_2 corresponds to the 1×1 matrix (2) – or the 2×2

matrix $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ - and $2_{-} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$

Notice that det(1-2) = -1 and $det(1-2_{-}) = 1$.

LEMMA 6.4. O_2 is isomorphic to O_2_- .

Proof. Both C^{*}-algebras have trivial K-theory (both K_0 and K_1 are trivial), and so they are isomorphic by Theorem 6.2.

The second part of the theorem below is due to Joachim Cuntz.

THEOREM 6.5. Two simple Cautz-Krieger algebras O_A and O_A v are stably isomorphic if and only if $K_0(O_A)$ is isomorphic to $K_0(O_A)$, and O_A is isomorphic to O_A if and only if $(K_0(O_A), [1])$ and $(K_0(O_A), [1])$ are isomorphic (i.e. if here is a group isomorphism $K_0(O_A) \rightarrow K_0(O_A)$ that carries the class of the unit of O_A on one dc class of the unit of O_A .

Timeline

Classification results

- 1995: Simple Cuntz-Krieger algebras [Rørdam]
- 1997: Cuntz-Krieger algebras with a unique ideal [Rørdam]
- 2006: Cuntz-Krieger algebras with finitely many ideals [Restorff]
- 2015: All Cuntz-Krieger algebras [E-Restorff-Ruiz-Sørensen]

Outline

- 1 Cuntz-Krieger algebras
- 2 Unital graph algebras
- 3 Geometric approach
- Quantum lens spaces
- 5 Further results

0

Definition

A graph is a tuple $\left(E^{0},E^{1},r,s\right)$ with

$$r, s: E^1 \to E^0$$

and E^0 and E^1 countable sets.

We think of $e \in E^1$ as an edge from s(e) to r(e) and often represent graphs visually

or by an adjacency matrix

$$\mathsf{A}_E = \begin{bmatrix} 0 & 0 & 0 & 0\\ \infty & 1 & 1 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Singular and regular vertices

Definitions

Let E be a graph and $v \in E^0$.

- v is a *sink* if $|s^{-1}(\{v\})| = 0$
- v is an *infinite emitter* if $|s^{-1}(\{v\})| = \infty$

Definition

v is singular if v is a sink or an infinite emitter. v is regular if it is not singular.

Definition

The graph C^* -algebra $C^*(E)$ is given as the universal C^* -algebra generated by mutually orthogonal projections $\{p_v : v \in E^0\}$ and partial isometries $\{s_e : e \in E^1\}$ with mutually orthogonal ranges subject to the Cuntz-Krieger relations

$$s_e^* s_e = p_{r(e)}$$

$$s_e s_e^* \le p_{s(e)}$$

$$p_v = \sum_{s(e)=v} s_e s_e^* \text{ for every regular } v$$

 $C^{\ast}(E)$ is unital precisely when E has finitely many vertices.

Example

 \mathbb{C} , $M_2(\mathbb{C})$, \mathbb{K} , \mathcal{O}_2 , \mathcal{E}_2 , \mathcal{O}_∞ , \mathcal{T} , $M_{2^\infty} \otimes \mathbb{K}$, \mathbb{K}^{\sim} ,...

Observation

$$\gamma_z(p_v) = p_v \qquad \gamma_z(s_e) = zs_e$$

induces a gauge action $\mathbb{T} \mapsto \operatorname{Aut}(C^*(E))$

Theorem

Gauge invariant ideals are induced by hereditary and saturated sets of vertices V:

•
$$s(e) \in V \Longrightarrow r(e) \in V$$

•
$$r(s^{-1}(v)) \subseteq V \Longrightarrow [v \in V \text{ or } v \text{ is singular}]$$

and when there are no **breaking vertices**, all such ideals arise this way.

The gauge simple case

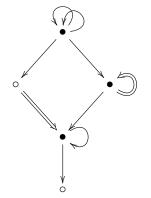
Theorem

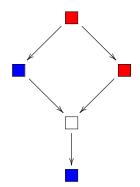
If a graph $C^{\ast}\mbox{-algebra}$ has no non-trivial gauge invariant ideals, it is either

- a simple AF algebra;
- a Kirchberg algebra; or

 $\neg C(\mathbb{T}) \otimes \mathbb{K}(H)$ for some Hilbert space H.

It is easy to tell from the graph which case occurs: The first case occurs when the graph has no cycles; the second when one vertex supports several cycles.





Filtered K-theory

Definition

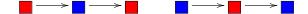
Let ${\mathfrak A}$ be a $C^*\text{-algebra}$ with only finitely many gauge invariant ideals. The collection of all sequences

with gauge invariant $\mathfrak{I} \triangleleft \mathfrak{J} \triangleleft \mathfrak{J} \triangleleft \mathfrak{A} \triangleleft \mathfrak{A}$ is called the *filtered K-theory* of \mathfrak{A} and denoted $\mathsf{FK}^{\gamma}(\mathfrak{A})$. Equipping all K_0 -groups with order we arrive at the *ordered, filtered K-theory* $\mathsf{FK}^{\gamma,+}(\mathfrak{A})$.

Working conjecture [E-Restorff-Ruiz 2010]

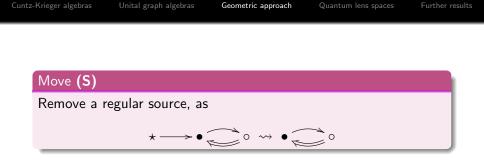
 $\mathsf{FK}^{\gamma,+}(-)$ is a complete invariant, up to stable isomorphism, for graph C^* -algebras of real rank zero (*i.e.*, with no \square subquotients) and finitely many ideals.

- Confirmed in the non-mixed cases: by Elliott 1976 and by Bentmann-Meyer 2014 amended by Restorff-Ruiz.
- Confirmed by E-Restorff-Ruiz in further cases with controlled mixing, including the case with a single ideal. First open cases:



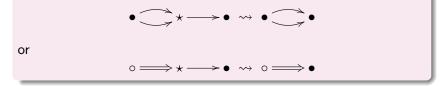
 No counterexamples are known, even allowing for subquotients.

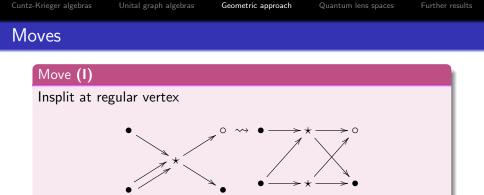
- Cuntz-Krieger algebras
- 2 Unital graph algebras
- 3 Geometric approach
- Quantum lens spaces
- 5 Further results



Move (R)

Reduce a configuration with a transitional regular vertex, as





Move **(0)**

Definition

 $E\sim_{ME}F$ when there is a finite sequence of moves of type

(S), (R), (O), (I),

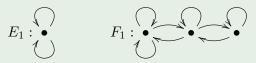
and their inverses, leading from E to F.

Theorem (Cuntz-Krieger, Bates-Pask)

 $E \sim_{ME} F \Longrightarrow C^*(E) \otimes \mathbb{K} \simeq C^*(F) \otimes \mathbb{K}$

Example (Rørdam 1995)

When



we get that

```
C^*(E_1) \otimes \mathbb{K} \simeq C^*(F_1) \otimes \mathbb{K},
```

yet $E_1 \not\sim_{ME} F_1$.



Definition

 $E\sim_{CE}F$ when there is a finite sequence of moves of type

(S),(R),(O),(I),(C)

and their inverses, leading from E to F.

Theorem (E-Restorff-Ruiz-Sørensen)

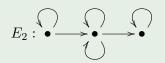
Let $C^*(E)$ and $C^*(F)$ be unital graph algebras with real rank zero. Then the following are equivalent

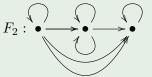
(i)
$$C^*(E) \otimes \mathbb{K} \simeq C^*(F) \otimes \mathbb{K}$$

```
(ii) E \sim_{CE} F
```

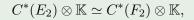
(iii) $\mathsf{FK}^{\gamma,+}(C^*(E)) \simeq \mathsf{FK}^{\gamma,+}(C^*(F))$

When





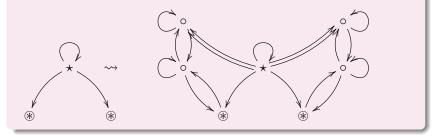
we get that



yet $E_2 \not\sim_{CE} F_2$.

Move (P)

"Butterfly move" on a vertex supporting a single cycle emitting only singly to vertices supporting two cycles



Definition

 $E\sim_{PE}F$ when there is a finite sequence of moves of type

(S),(R),(O),(I),(C),(P)

and their inverses, leading from E to F.

Theorem (E-Restorff-Ruiz-Sørensen)

Let $C^{\ast}(E)$ and $C^{\ast}(F)$ be unital graph algebras. Then the following are equivalent

(i) $C^*(E) \otimes \mathbb{K} \simeq C^*(F) \otimes \mathbb{K}$

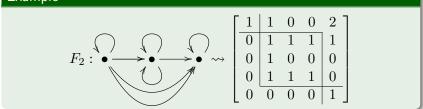
(ii) $E \sim_{PE} F$

(iii) $\mathsf{FK}^{\gamma,+}(C^*(E)) \simeq \mathsf{FK}^{\gamma,+}(C^*(F))$

Lemma

For any pair of graphs (E, F) with $FK^{\gamma,+}(C^*(E)) \simeq FK^{\gamma,+}(C^*(F))$ there is a pair of graphs (E', F')so that the regular adjacency matrices $A^{\circ}_{E'}$ and $A^{\circ}_{F'}$ have identically, suitably sized upper triangular block matrix forms, and so that $E \sim_{ME} E'$ and $F \sim_{ME} F'$. We say that (E', F') is in canonical form.

Example



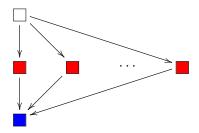
Proposition

When (E,F) is in canonical form, we have

- $E \sim_{ME} F \iff \exists U, V \in \mathsf{SL}^{\boxplus}(\mathbb{Z}) : U(\mathsf{A}_E I)^\circ = (\mathsf{A}_F I)^\circ V$
- $E \sim_{CE} F \iff \exists U, V \in \mathsf{GL}^{\boxplus}(\mathbb{Z}) : U(\mathsf{A}_E I)^\circ = (\mathsf{A}_F I)^\circ V$ so that $\det U\{i\} = \det V\{i\} = 1$ at all or blocks
- $E \sim_{PE} F \iff \exists U, V \in \mathsf{GL}^{\boxplus}(\mathbb{Z}) : U(\mathsf{A}_E I)^\circ = (\mathsf{A}_F I)^\circ V$ so that $\det U\{i\} = 1$ at all or blocks

This closely follows an argument in symbolic dynamics by Boyle-Huang. Passing to canonical form is algorithmic. As a consequence (cf. upcoming work by Boyle-Steinberg), stable isomorphism of unital graph C^* -algebras is a decidable property.

General classification methods applied to a very special case of



Outline

- Cuntz-Krieger algebras
- 2 Unital graph algebras
- 3 Geometric approach
- Quantum lens spaces
- 5 Further results

Definition

The Vaksman-Soibelman odd quantum sphere $C(S_q^{2n-1})$ is the universal C^* -algebra for generators z_1, \ldots, z_n subject to

$$\begin{aligned} z_j z_i &= q z_i z_j \quad i < j \\ z_j^* z_i &= q z_i z_j^* \quad i \neq j \\ z_i^* z_i &= z_i z_i^* + (1 - q^2) \sum_{j > i} z_j z_j^* \end{aligned}$$

$$1 = \sum_{i=1}^{n} z_i z_i^*$$

for $q \in (0, 1)$.

Let n and r be given, set $\theta=e^{2\pi i/r}$ and note that

$$\Lambda_{\underline{m}}(z_i) = \theta^{m_i} z_i$$

with $\underline{m} = (m_1, \dots, m_n)$ defines $\Lambda_{\underline{m}} \in \operatorname{Aut} C(S_q^{2n-1})$ when $(m_i, r) = 1$ for all *i*.

Definition [Hong-Szymanski 2002]

Given r, n, and $\underline{m} \in \mathbb{N}^n$. The **quantum lens space** $C(L_a^{2n-1}(r;\underline{m}))$ is the fixed point space

$$C(S_q^{2n-1})^{\Lambda_{\underline{m}}}$$

Theorem (Hong-Szymanski 2002)

 $C(L_q^{2n-1}(r;\underline{m}))$ is a unital graph $C^*\mbox{-algebra}$ which has real rank one and is postliminal/type I.

Let us say that $C(L^{2n-1}_q(r;\underline{m}))$ depends on \underline{m} when for some \underline{m} and $\underline{m}',$ we have

$$C(L_q^{2n-1}(r;\underline{m})) \not\simeq C(L_q^{2n-1}(r;\underline{m}'))$$

Theorem (E-Restorff-Ruiz-Sørensen, Jensen-Klausen-Rasmussen) $C(L_q^{2n-1}(r;\underline{m}))$ depends on \underline{m} precisely when $n \ge 2b, \quad 2b > p > 2, \quad p \mid r$

2	3	4	5	6	7	8	9	10	11	12	13
∞	4	6	6	4	8	6	4	6	12	4	14

- Cuntz-Krieger algebra
- 2 Unital graph algebras
- 3 Geometric approach
- Quantum lens spaces
- 5 Further results

Observation [Arklint-Restorff-Ruiz]

 $\mathsf{FK}^{\gamma,+}(-)$ fails to give strong classification already for Cuntz-Krieger algebras of real rank zero.

Theorem (E-Restorff-Ruiz-Sørensen)

Let $C^*(E)$ and $C^*(F)$ be unital graph algebras. Then the following are equivalent

(i)
$$C^*(E) \otimes \mathbb{K} \simeq C^*(F) \otimes \mathbb{K}$$

(ii) $E \sim_{PE} F$

- (iii) $\mathsf{FK}^{\gamma,+}(C^*(E)) \simeq \mathsf{FK}^{\gamma,+}(C^*(F))$
- (iv) $\operatorname{FK}_{\operatorname{red}}^{\gamma,+}(C^*(E)) \simeq \operatorname{FK}_{\operatorname{red}}^{\gamma,+}(C^*(F))$

Unital graph algebras

Proposition [Carlsen-Restorff-Ruiz]

Any given isomorphism at the level of $\mathsf{FK}^{\gamma,+}_{\mathsf{red}}(-)$ lifts to a pair of $\mathsf{GL}^{\boxplus}(\mathbb{Z})$ matrices (U,V)

Theorem (E-Restorff-Ruiz-Sørensen)

Let $C^{\ast}(E)$ and $C^{\ast}(F)$ be unital graph algebras. Then the following are equivalent

(i)
$$C^*(E) \otimes \mathbb{K} \simeq C^*(F) \otimes \mathbb{K}$$

(ii)
$$E \sim_{PE} F$$

- (iii) $\mathsf{FK}^{\gamma,+}(C^*(E)) \simeq \mathsf{FK}^{\gamma,+}(C^*(F))$
- (iv) $\operatorname{FK}^{\gamma,+}_{\operatorname{red}}(C^*(E)) \simeq \operatorname{FK}^{\gamma,+}_{\operatorname{red}}(C^*(F))$

and any given isomorphism on $\mathsf{FK}^{\gamma,+}_{\mathsf{red}}(-)$ lifts to a *-isomorphism.

Corollary [E-Restorff-Ruiz-Sørensen]

Let $C^\ast(E)$ and $C^\ast(F)$ be unital graph algebras. Then the following are equivalent

(i) $C^*(E) \simeq C^*(F)$

(ii) $(\mathsf{FK}^{\gamma,+}_{\mathsf{red}}(C^*(E)),[1]) \simeq (\mathsf{FK}^{\gamma,+}_{\mathsf{red}}(C^*(F)),[1])$

 $C^*(E)$ contains a canonical abelian subalgebra \mathcal{D}_E which is Cartan under modest assumptions.

Conjecture

The following are equivalent

- (i) $E \sim_{ME} F$
- (ii) $(C^*(E) \otimes \mathbb{K}, \mathcal{D}_E \otimes c_0) \simeq (C^*(F) \otimes \mathbb{K}, \mathcal{D}_F \otimes c_0)$

Evidence

- (i) \implies (ii) holds as noted by Cuntz-Krieger.
- Confirmed when $C^*(E)$ is simple (Matsumoto-Matui 2014, Sørensen 2013)
- Confirmed for Cuntz-Krieger algebras (Arklint-E-Ruiz, Carlsen-E-Restorff-Ruiz)
- $(C^*(E_2) \otimes \mathbb{K}, \mathcal{D}_{E_2} \otimes c_0) \neq (C^*(F_2) \otimes \mathbb{K}, \mathcal{D}_{F_2} \otimes c_0)$