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Cuntz-Krieger 1980
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A Class of C*-Algebras and Topological Markov Chains 265 

4. Flow Equivalence 

Topological Markov chains are said to be flow equivalent if their suspension 
flows act on spaces that are homeomorphic under homeomorphisms that respect 
the orientation of the orbits [11]. Equivalently they are flow equivalent if they 
induce isomorphic chains on some closed open subset, that is, if they are 
Kakutani equivalent. Parry and Sullivan have given a description of flow 
equivalence in terms of a matrix operation [ 11]. This description leads to a sort 
of instant computational proof of the invariance of the pair (iDT, under flow 
equivalence. We want to give this proof here. We point out, however, that a 
conceptual proof of this fact is also possible if one exploits the circumstance that 
@T arises as a crossed product. 

4.1. Theorem. If T1 and T2 are flow equivalent then 

(@1'1' 

Proof. F.rom the transition matrix A =(ai)1 form the transition matrix 

0 all aln 
1 0 0 

A= 0 a11 a2n 

0 anl ann 

According to Parry and Sullivan, to prove the theorem it is enough to prove 
that 

(iDi1A' g))"'(&it;p g)), 

The algebra (!) .4 is generated by n + 1 partial isometries S0, ... , Sn satisfying (A). 
By definition of A the partial isometries =S1So, s; =S2, ... satisfy (A)'. 
Note that SiS0 =t=O if and only if i=l and that S1 Si=FO if and only if j=O. Thus 
every sµ (µe.fi ,4) is of the form sµ for some r:t.E.fi A or of the form sµ =SoSp 
for some {3e.fi A or it is Sµ =S 1 • 

Set P=S1Sj+ ... +sns:. If PSµs:P=FO for someµ, ve.fi.4, then using S1 Si 
=S'1S'1* we see that Sv=S'p for some rx,{3E.fiA. This shows 

that P (!) .4 P is generated by S'1, ... , and thus is isomorphic to (!)A. Since for 
every range projection SµS:, (µE.fi ,4) the product SµS: P is either 0 or of the 
form (rxe.fiA), we see at the same time that The theorem 
follows now from Lemma 3.7. Q.e.d. 

5. The Ext-Group for <D ..t 

Let H be a separable infinite-dimensional Hilbert space, let ff (H) be the algebra 
of all bounded linear operators on H, f(H)c ff(H) the algebra of compact 
operators and let n: be the quotient map onto the Calkin algebra f2, 
===2(H)/f (H). An extension of a separable C*-algebra .sd is a star monomor-
Phism a: fl.. Two extensions p, a are called weakly equivalent, if there is a 
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Rørdam 1995

CLASSIFICATION OF CUNTZ-KRmGER ALGEBRAS 51 

The class of all simple Cuntz-Krieger algebras is classified by K-theory. This 
is proved using a theorem of Cuntz, see the appendix, and the two Cuntz-Krieger 
algebras 02 and O2_, where 02 corresponds to the 1 x 1 matrix (2) - or the 2 x 2 

matrix 1 1  

1 1 1 0  
2 _ =  0 1 1 1  " 

0 0 1 1  

Notice that det(1 - 2) = - 1 and det(1 - 2_) = 1. 

LEMMA 6.4. O2 is isomorphic to 02_. 
Proof Both C*-atgebras have trivial K-theory (both K0 and K1 are trivial), and 

so they are isomorphic by Theorem 6.2. [] 

The second part of the theorem below is due to Joachim Cuntz. 

THEOREM 6.5. Two simple Cuntz-Krieger algebras OA and OA, are stably 
isomorphic if and only if Ko( O A ) is isomorphic to K0 (Ox,), and O A is isomorphic 
to O A, if and only if ( l(o ( O A ) , [ 1] ) and (1£o ( O A, ) , [ 1] ) are isomorphic (i.e. if there 
is a group isomorphism Ko( OA) --+ KO( OA,) that carries the class of  the unit of  
O A onto the class of the unit of O A, ). 

Proof If det(1 - A) = det(1 - A'), then the stable isomorphism follows from 
the Cuntz-Krieger-Franks classification theorem (2.1). Suppose that det(1 - A) = 
-de t (1  - X) .  Then det(l - A') = det(1 - A_) and K0(OA_) is isomorphic 
to KO(OA) (see the appendix). Hence OA, is stably isomorphic to OA_. Cuntz' 
theorem (see Theorem 7.2), together with Lemma 6.4, says that OA_ is stably 
isomorphic to OA. Hence OA is stably isomorphic to OA,. 

Let now a0 : I(o(OA) -+ KO(OA, ) be an isomorphism such that o~0([1]) = [1], 
and choose an isomorphism iP: OA ® E -+ OA, ®/~. Let e be a one-dimensional 
projection in/6. From the assumption on a0 there is an automorphism/3 of K0(OA ) 
that maps [qp(1 ® e)] onto [1 ® e]. From Huang's theorem, [10, 2.15],/3 is induced 
by a flow equivalence and by [6, 4.1] - and its p r o o f -  this flow equivalence gives 
rise to an automorphism ~ of OA ® E which implements/3. The two projections 
g,~(1 ® e) and 1 ® e represent the same class in KO(OA) and they are therefore 
equivalent by [5, Section 1]. Let v be a partial isometry in OA ®/6 so that vv* = 1 @ e 
and v*v = ~ ( 1  ® e). Then a ~ v(¢~(a ® e))v* is an isomorphism from OA 
onto OA @ Ce - OA. [] 

The C*-algebras of the form Mk(O~), with n even, were classified in [13]. The 
general case follows from Theorem 6.5. 

COROLLARY 6.6. The C*-algebras 3/lk( O~ ) and Me( O~) are isomorphic if and 
only i f(k,  n - 1) = ((, n -  1). 
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Timeline

Classification results

1995: Simple Cuntz-Krieger algebras [Rørdam]

1997: Cuntz-Krieger algebras with a unique ideal [Rørdam]

2006: Cuntz-Krieger algebras with finitely many ideals
[Restorff]

2015: All Cuntz-Krieger algebras [E-Restorff-Ruiz-Sørensen]
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Definition

A graph is a tuple (E0, E1, r, s) with

r, s : E1 → E0

and E0 and E1 countable sets.

We think of e ∈ E1 as an edge from s(e) to r(e) and often
represent graphs visually

◦ +3 •
�� (( •hh // ◦

or by an adjacency matrix

AE =


0 0 0 0
∞ 1 1 0
0 1 0 0
0 0 1 0
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Singular and regular vertices

Definitions

Let E be a graph and v ∈ E0.

v is a sink if |s−1({v})| = 0

v is an infinite emitter if |s−1({v})| =∞

Definition

v is singular if v is a sink or an infinite emitter. v is regular if it is
not singular.

◦ +3 •
�� (( •hh // ◦
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Definition

The graph C∗-algebra C∗(E) is given as the universal C∗-algebra
generated by mutually orthogonal projections {pv : v ∈ E0} and
partial isometries {se : e ∈ E1} with mutually orthogonal ranges
subject to the Cuntz-Krieger relations

1 s∗ese = pr(e)
2 ses

∗
e ≤ ps(e)

3 pv =
∑

s(e)=v ses
∗
e for every regular v

C∗(E) is unital precisely when E has finitely many vertices.

Example

C, M2(C), K, O2, E2, O∞, T , M2∞ ⊗K,K∼,. . .
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Observation

γz(pv) = pv γz(se) = zse

induces a gauge action T 7→ Aut(C∗(E))

Theorem

Gauge invariant ideals are induced by hereditary and saturated
sets of vertices V :

s(e) ∈ V =⇒ r(e) ∈ V
r(s−1(v)) ⊆ V =⇒ [v ∈ V or v is singular]

and when there are no breaking vertices, all such ideals arise this
way.
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The gauge simple case

Theorem

If a graph C∗-algebra has no non-trivial gauge invariant ideals, it is
either

a simple AF algebra;

a Kirchberg algebra; or

C(T)⊗K(H) for some Hilbert space H.

It is easy to tell from the graph which case occurs: The first case
occurs when the graph has no cycles; the second when one vertex
supports several cycles.
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Filtered K-theory

Definition

Let A be a C∗-algebra with only finitely many gauge invariant
ideals. The collection of all sequences

K0(J/I) // K0(K/I) // K0(K/J)

��
K1(K/J)

OO

K1(K/I)oo K1(J/I)oo

with gauge invariant I / J / K / A is called the filtered K-theory of
A and denoted FKγ(A). Equipping all K0-groups with order we
arrive at the ordered, filtered K-theory FKγ,+(A).
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Working conjecture [E-Restorff-Ruiz 2010]

FKγ,+(−) is a complete invariant, up to stable isomorphism, for
graph C∗-algebras of real rank zero (i.e., with no subquotients)
and finitely many ideals.

Confirmed in the non-mixed cases: by Elliott 1976 and
by Bentmann-Meyer 2014 amended by Restorff-Ruiz.

Confirmed by E-Restorff-Ruiz in further cases with controlled
mixing, including the case with a single ideal. First open cases:

// // // //

No counterexamples are known, even allowing for
subquotients.
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Move (S)

Remove a regular source, as

? // • (( ◦dl  • (( ◦dl

Move (R)

Reduce a configuration with a transitional regular vertex, as

• ((
66 ? // •  • ((

66 •

or
◦ +3 ? // •  ◦ +3 •
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Moves

Move (I)

Insplit at regular vertex

•
%%

◦

?

99

%%•

99 99

•

 • // ? //

��

◦

•

AA

// ? //

AA

•

Move (O)

Outsplit at any vertex (at most one group of edges infinite)

•
%%
?
�� +3 •

•

99

 • //

��

?
��

%% •

•

BB

// ?

OO

5=
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Definition

E ∼ME F when there is a finite sequence of moves of type

(S),(R),(O),(I),

and their inverses, leading from E to F .

Theorem (Cuntz-Krieger, Bates-Pask)

E ∼ME F =⇒ C∗(E)⊗K ' C∗(F )⊗K
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Example (Rørdam 1995)

When

E1 : •
��
EE F1 : •

��
EE

(( •
��

hh
(( •hh
��

we get that
C∗(E1)⊗K ' C∗(F1)⊗K,

yet E1 6∼ME F1.
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Move (C)

“Cuntz splice” on a vertex supporting two cycles

~  ~ (( •
�� ((

ii •hh
��
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Definition

E ∼CE F when there is a finite sequence of moves of type

(S),(R),(O),(I),(C)

and their inverses, leading from E to F .

Theorem (E-Restorff-Ruiz-Sørensen)

Let C∗(E) and C∗(F ) be unital graph algebras with real rank
zero. Then the following are equivalent

(i) C∗(E)⊗K ' C∗(F )⊗K
(ii) E ∼CE F
(iii) FKγ,+(C∗(E)) ' FKγ,+(C∗(F ))
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Example (E/Restorff/Ruiz/Sørensen 2015)

When

E2 : • //��
•
��
EE

// •
��

F2 : •
�� //

BB
//

FF•
��
EE

// •
��

we get that
C∗(E2)⊗K ' C∗(F2)⊗K,

yet E2 6∼CE F2.
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Move (P)

“Butterfly move” on a vertex supporting a single cycle emitting
only singly to vertices supporting two cycles

◦
%%

��

◦
yy

��
?
��

��		

 ◦
%%

HH

&&

?

????____

��

��		

◦

HH

zz

xx
~ ~ ~

ff

~

88
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Definition

E ∼PE F when there is a finite sequence of moves of type

(S),(R),(O),(I),(C),(P)

and their inverses, leading from E to F .

Theorem (E-Restorff-Ruiz-Sørensen)

Let C∗(E) and C∗(F ) be unital graph algebras. Then the
following are equivalent

(i) C∗(E)⊗K ' C∗(F )⊗K
(ii) E ∼PE F

(iii) FKγ,+(C∗(E)) ' FKγ,+(C∗(F ))
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(iii)=⇒(ii)

Lemma

For any pair of graphs (E,F ) with
FKγ,+(C∗(E)) ' FKγ,+(C∗(F )) there is a pair of graphs (E′, F ′)
so that the regular adjacency matrices A◦E′ and A◦F ′ have
identically, suitably sized upper triangular block matrix forms, and
so that E ∼ME E

′ and F ∼ME F
′. We say that (E′, F ′) is in

canonical form.

Example

F2 : •
�� //

BB
//

FF•
��
EE

// •
��
 


1 1 0 0 2
0 1 1 1 1
0 1 0 0 0
0 1 1 1 0
0 0 0 0 1
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(iii)=⇒ (ii)

Proposition

When (E,F ) is in canonical form, we have

E ∼ME F ⇐⇒ ∃U, V ∈ SL�(Z) : U(AE − I)◦ = (AF − I)◦V

E ∼CE F ⇐⇒ ∃U, V ∈ GL�(Z) : U(AE − I)◦ = (AF − I)◦V
so that detU{i} = detV {i} = 1 at all or blocks

E ∼PE F ⇐⇒ ∃U, V ∈ GL�(Z) : U(AE − I)◦ = (AF − I)◦V
so that detU{i} = 1 at all or blocks

This closely follows an argument in symbolic dynamics by
Boyle-Huang. Passing to canonical form is algorithmic. As a
consequence (cf. upcoming work by Boyle-Steinberg), stable
isomorphism of unital graph C∗-algebras is a decidable property.
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(ii)=⇒(i)

General classification methods applied to a very special case of

�� �� **

�� ��

· · ·

tt
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Definition

The Vaksman-Soibelman odd quantum sphere C(S2n−1
q ) is the

universal C∗-algebra for generators z1, . . . , zn subject to

zjzi = qzizj i < j

z∗j zi = qziz
∗
j i 6= j

z∗i zi = ziz
∗
i + (1− q2)

∑
j>i

zjz
∗
j

1 =

n∑
i=1

ziz
∗
i

for q ∈ (0, 1).
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Let n and r be given, set θ = e2πi/r and note that

Λm(zi) = θmizi

with m = (m1, . . . ,mn) defines Λm ∈ AutC(S2n−1
q ) when

(mi, r) = 1 for all i.

Definition [Hong-Szymanski 2002]

Given r, n, and m ∈ Nn. The quantum lens space
C(L2n−1

q (r;m)) is the fixed point space

C(S2n−1
q )Λm

Theorem (Hong-Szymanski 2002)

C(L2n−1
q (r;m)) is a unital graph C∗-algebra which has real rank

one and is postliminal/type I.
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Let us say that C(L2n−1
q (r;m)) depends on m when for some m

and m′, we have

C(L2n−1
q (r;m)) 6' C(L2n−1

q (r;m′))

Theorem (E-Restorff-Ruiz-Sørensen, Jensen-Klausen-Rasmussen)

C(L2n−1
q (r;m)) depends on m precisely when

n ≥ 2b, 2b > p > 2, p | r

2 3 4 5 6 7 8 9 10 11 12 13

∞ 4 6 6 4 8 6 4 6 12 4 14
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Observation [Arklint-Restorff-Ruiz]

FKγ,+(−) fails to give strong classification already for
Cuntz-Krieger algebras of real rank zero.

Theorem (E-Restorff-Ruiz-Sørensen)

Let C∗(E) and C∗(F ) be unital graph algebras. Then the
following are equivalent

(i) C∗(E)⊗K ' C∗(F )⊗K
(ii) E ∼PE F

(iii) FKγ,+(C∗(E)) ' FKγ,+(C∗(F ))

(iv) FKγ,+
red (C∗(E)) ' FKγ,+

red (C∗(F ))
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Proposition [Carlsen-Restorff-Ruiz]

Any given isomorphism at the level of FKγ,+
red (−) lifts to a pair of

GL�(Z) matrices (U, V )

Theorem (E-Restorff-Ruiz-Sørensen)

Let C∗(E) and C∗(F ) be unital graph algebras. Then the
following are equivalent

(i) C∗(E)⊗K ' C∗(F )⊗K
(ii) E ∼PE F

(iii) FKγ,+(C∗(E)) ' FKγ,+(C∗(F ))

(iv) FKγ,+
red (C∗(E)) ' FKγ,+

red (C∗(F ))

and any given isomorphism on FKγ,+
red (−) lifts to a ∗-isomorphism.
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Corollary [E-Restorff-Ruiz-Sørensen]

Let C∗(E) and C∗(F ) be unital graph algebras. Then the
following are equivalent

(i) C∗(E) ' C∗(F )

(ii) (FKγ,+
red (C∗(E)), [1]) ' (FKγ,+

red (C∗(F )), [1])
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C∗(E) contains a canonical abelian subalgebra DE which is Cartan
under modest assumptions.

Conjecture

The following are equivalent

(i) E ∼ME F

(ii) (C∗(E)⊗K,DE ⊗ c0) ' (C∗(F )⊗K,DF ⊗ c0)

Evidence

(i)=⇒ (ii) holds as noted by Cuntz-Krieger.

Confirmed when C∗(E) is simple (Matsumoto-Matui 2014,
Sørensen 2013)

Confirmed for Cuntz-Krieger algebras (Arklint-E-Ruiz,
Carlsen-E-Restorff-Ruiz)

(C∗(E2)⊗K,DE2 ⊗ c0) 6' (C∗(F2)⊗K,DF2 ⊗ c0)
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