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Abstract. We present new invariants for substitutional dynamical systems. Our
main contribution is a flow invariant which is strictly finer than, but related and
akin to, the dimension groups of Herman, Putnam and Skau. We present this
group as a stationary inductive limit of a system associated to an integer matrix
defined from combinatorial data based on the class of special words of the dynamical
system.

1. Introduction
The topics of topological dynamics and operator algebras are tied together in a
way allowing fruitful bidirectional (although asymmetrical) transport of ideas from
one area of research to another. The main benefit for operator algebras from
this transport of ideas seems to be the definition of several important classes of
C∗-algebras associated to dynamical systems. The main benefit for topological
dynamics seems to be the discovery of conjugacy invariants, especially ordered
groups arising from K-theory for operator algebras.

The contribution in the present paper is of the latter kind, based on a
contribution by Matsumoto of the former. Indeed, computing the K-groups of
C∗-algebras associated to certain shift spaces, we shall arrive at a flow (and hence
conjugacy) invariant for these. This invariant is closely related to, but finer than,
the dimension groups for substitutional shift spaces defined by Herman, Putnam
and Skau in [18], and studied in this particular setting by Durand, Host and Skau
in [14].

The ground-breaking work of Cuntz and Krieger [13] showed how to associate, in
a natural and conjugacy invariant way, a C∗-algebra to a shift space of finite type.
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2 T.M. Carlsen and S. Eilers

There has been a large amount of attention in the operator algebra community
to endeavors to generalize this construction, as the Cuntz-Krieger class holds a
pivotal position in the theory of purely infinite C∗-algebras. Some work has taken
the graph picture of such a shift space as a starting point of generalization to a
non-finite setting. Other work, notably that of K. Matsumoto, has looked towards
the full class of shift spaces on a finite alphabet. Indeed, in a series of papers [24]–
[28] Matsumoto has managed to associate a certain C∗-algebra to any such shift
space, and to gather much information about the algebras.

At the core of the interplay between operator algebras and dynamics lies an idea
originating with Krieger to study the K-groups of the operator algebras in question,
employing the fact that these will be invariants of the shift spaces when the C∗-
algebras are. This idea allowed the realization of the dimension groups originating
in Elliott’s work [15] on AF algebras as the conjugacy invariant now well known.

Such a strategy has been successfully pursued in work of Matsumoto ([24]-[29])
(and of Krieger and Matsumoto ([21])) leading to a complete description of theseK-
groups which does not involve C∗-algebras, and to new insight in several important
classes of shift spaces. Taking the vastness of the class covered by Matsumoto’s work
into account, it is no surprise that the best general description of such algebras —
given in terms of “past equivalence” — is not readily computable. However, for the
class of substitutional dynamical spaces which is the focus of the present paper, a
very concrete description of this group can be given taking into account the ordered
group arising as the K-theory of a completely different C∗-algebraic construction.

Indeed, such shift spaces will give rise to minimal topological dynamical systems,
and as shown in work by Putnam [33] and Giordano, Putnam and Skau [17],
the canonical crossed product associated hereto falls in a well studied class of C∗-
algebras. This work was the starting point for work by Durand, Host and Skau [14]
and by Forrest [16] leading to new and readily computable conjugacy invariants for
such systems.

In the present paper, we shall compute the Matsumoto K-groups for any
primitive and aperiodic substitution shift space in terms of an integer matrix giving
rise to a dimension group through a standard inductive limit construction. The
starting point of our work is the intermediate presentation of the K-groups given
in [10] which then, in the present paper, leads to a complete description of the
Matsumoto K-group as an inductive limit of a stationary system just like the K-
groups considered in [14]. Indeed, this part of our computation is a (not completely
trivial) adaptation of methods from that paper.

1.1. A recurring example Throughout the paper we shall use the substitutions

τ(a) = accdadbb τ(b) = acdcbadb

τ(c) = aacdcdbb τ(d) = accbdadb
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Augmenting dimension group invariants 3

and

υ(a) = accbbadd υ(b) = accdbabd

υ(c) = aacbbcdd υ(d) = acbcdabd

to illustrate the nature of our invariant, and to demonstrate how it is computed. The
corresponding shift spaces are strong orbit equivalent and hence indistinguishable
by the invariant of Durand, Host and Skau. This pair of examples is also resistant
to the method of comparing the configuration of the special elements or asymptotic
orbits (cf. [1]), suggested to us by Charles Holton. Indeed, the “configuration
data” of all right or left tail equivalence classes of special elements (see [10])
are identical. From [1, 3.10] τ and υ are flow equivalent precisely when the
derived substitutions τ∗ and υ∗ defined there are weakly equivalent. However,
since computer experiments indicate that both τ∗ and υ∗ allow squares ww but no
triples www in their respective languages, the method given in [1] for establishing
flow inequivalence does not seem to work here.

Nevertheless, we can use our invariant to prove that the shift spaces associated
to these two substitutions are not flow equivalent. We will return to this example
in 2.9, 3.4, 3.6, 3.8 and 5.17 below.

1.2. Acknowledgments This work is the result of a long process starting when
we were both visiting The Mathematical Sciences Research Institute, Berkeley,
CA, in the fall of 2000. We wish to thank the Danish Science Research Counsil
and Herborgs Fond for making this visit possible. We are also grateful to Klaus
Thomsen for directing our attention to the class of shift spaces considered in the
paper, and to Ian Putnam for hospitality and suggestions during a visit by the
first author to University of Victoria. We are also grateful to Charles Holton for a
productive email exchange during the process.

2. Preliminaries and notation
Let a be a finite set of symbols, and let a] denote the set of finite, nonempty words
with letters from a. Thus with ε denoting the empty word, ε 6∈ a].

2.1. Substitutions and shifts We refer to [14] and [34] for an introduction to this
subject. A substitution is simply a map

τ : a −→ a].

We can extend τ to a] in the obvious way, and thereby define powers of τ recursively
by

τn(a) = τ(τn−1(a)).

We find the following notation convenient:

Definition 2.1. Let v, w ∈ a]. We say that v occurs in w and write

v a w

when w = w′vw′′ for suitable w′, w′′ ∈ a] ∪ {ε}.
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4 T.M. Carlsen and S. Eilers

For w ∈ a], we call the number of letters in w the length and denote it |w|.
We set N0 = N ∪ {0} and −N = Z\N0, and equip aZ and aN0 with the

product topology from the discrete topology on a, and define σ : aZ −→ aZ and
σ+ : aN0 −→ aN0 by

(σ(x))n = xn+1, (σ+(x))n = xn+1.

Such maps we will refer to as shift maps. A two-sided shift space is a closed subset
of aZ which is mapped onto itself by σ. We shall refer to such spaces by “X” with
possible subscripts; note that σ(X) = X. A one-sided shift space is a closed subset
of aN0 which is mapped into itself by σ+. We refer to such spaces by X+, and
remark that σ+(X+) 6= X+ is possible. There is a rich theory of shift spaces; we
refer to [23] and [20] and shall not give details here, but just establish notation.
However, the method for describing such spaces by way of languages and forbidden
words deserves explicit mentioning here.

We can further extend τ to aN0 , a−N and aZ in the obvious way. It is necessary
in the last case, however, to specify that the word resulting from the substitution
of the letter at index 0 of a doubly infinite sequence x will be placed starting at
index 0 in τ(x). Using a dot to indicate the position separating −N and N0, as we
will do in the following, we thus have

τ(y.x) = τ(y).τ(x)

The language of a shift space is the subset of a] ∪ {ε} given by

L(X) = {w ∈ a] ∪ {ε} | ∃x ∈ X : w a x}

(extending the notation “a” in the obvious way). With the obvious restriction maps

π+ : X −→ aN0 ,

we get
σ+ ◦ π+ = π+ ◦ σ

and immediately note that π+(X) is a one-sided shift space. Sometimes it is more
suggestive to write

x[n,∞[ = π+(σn(x))

for n ∈ Z.
Whenever F ⊆ a] is given, we define a two-sided shift space by

XF = {(xi) ∈ aZ | ∀i < j ∈ Z : xi · · ·xj 6∈ F}.

One can prove that every two-sided shift space has such a description.
We say that shift spaces are conjugate, denoted by “'”, when they are

homeomorphic via a map which intertwines the relevant shift maps. A conjugacy
invariant is a mapping associating to a class of shift spaces another mathematical
object, called the invariant, in such a way that conjugate shift spaces give
isomorphic invariants.
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The weaker notion of flow equivalence among two-sided shift spaces is also of
importance here. This notion is defined using the suspension flow space of (X, σ)
defined as SX = (X × R)/ ∼ where the equivalence relation ∼ is generated by
requiring that (x, t+ 1) ∼ (σ(x), t). Equipped with the quotient topology, we get a
compact space with a continuous flow consisting of a family of maps (φt) defined
by φt([x, s]) = [x, s+ t]. We say that two shift spaces X and X′ are flow equivalent
and write X ∼=f X′ if a homeomorphism F : SX −→ SX′ exists with the property
that for every x ∈ SX there is a monotonically increasing map fx : R −→ R such
that

F (φt(x)) = φ′fx(t)(F (x)).

In words, F takes flow orbits to flow orbits in an orientation-preserving way. It is
not hard to see that conjugacy implies flow equivalence.

We derive shift spaces from substitutions as follows:

Definition 2.2. With τ a substitution, we set

Fτ = a]\{w ∈ a] | ∃n ∈ N, a ∈ a : w a τn(a)}.

We abbreviate XFτ
= Xτ .

Clearly the maps derived from τ above sends Xτ back in itself.

2.2. Classes of substitutions In this section, we single out and discuss some
important properties of substitutions:

Definition 2.3. A substitution τ is primitive if |a| > 1 and

∃n ∈ N∀a, b ∈ a : b a τn(a).

Note that Fτ = Fτn and (hence Xτ = Xτn) irrespective of n ∈ N, when τ is
primitive. Furthermore, in the primitive case, Xτ is minimal in the sense that
every orbit {σm(x) | m ∈ Z} is dense, see [34, p. 90].

We are not interested in the case where Xτ is finite, and hence consider only the
following class.

Definition 2.4. A substitution τ is aperiodic if Xτ is infinite.

The following concepts are useful in determining whether or not a substitution
is aperiodic.

Definition 2.5. A substitution τ on the alphabet a is intertwined with a
substitution υ on the alphabet b if τ = g ◦ f and υ = f ◦ g for some maps

f : a −→ b] g : b −→ a].

We say that υ is a simplification of τ if |b| < |a|. In case τ has no simplification,
we call it elementary.
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6 T.M. Carlsen and S. Eilers

It is computable whether a substitution is elementary or not, and there is an
algorithmic way to produce a sequence of simplifications ending with an elementary
substitution in the latter case, cf. [35, p. 17]. Since simplification preserves
aperiodicity, this reduces the problem of deciding aperiodicity to the elementary
case, in which it is readily decidable, cf. [32].

The final property we shall consider is perhaps less natural than the others:

Definition 2.6. A substitution τ is proper if for some τ ′ : a −→ a] ∪ {ε},

∃n ∈ N∃l, r ∈ a∀a ∈ a : τn(a) = lτ ′(a)r.

In [14, Proposition 20, Lemma 21] an algorithmic way is given for passing
from a primitive and aperiodic substitution τ ′ to a primitive, aperiodic and proper
substitution τ such that Xτ ′ ' Xτ . There is hence no restriction, when the goal
is to discuss conjugacy or flow equivalence of aperiodic and primitive substitution
shift spaces, in working with the proper ones among them.

Furthermore, when a proper, primitive and aperiodic substitution τ ′ is simplified
to an elementary substitution τ ′′, the resulting substitution will also be proper,
primitive and aperiodic. That properness is preserved after incrementing the power
n in Definition 2.6 is obvious, and the other two claims are proved in [8, Lemma

Proposition 2.7. If τ and υ are intertwined primitive substitutions, then Xτ
∼=f

Xυ.

Proof: Assume that g ◦ f = τ and f ◦ g = υ with notation as in Definition 2.5. We
prove the claim by defining

F : SXτ −→ SXυ

by F ([x, s]) = [f(x), s|f(x0)|] when s ∈ [0, 1[ and x ∈ Xτ . Checking that F is
defined and continuous is straightforward; we shall give details for injectivity and
surjectivity of F .

Suppose first that [f(x), s|f(x0)|] = [f(y), t|f(y0)|] for some s, t ∈ [0, 1[ and
x, y ∈ Xτ . By definition, there is an n ∈ Z with the property

σn(f(x)) = f(y) s|f(x0)| = t|f(y0)|+ n.

Reversing the roles of x and y if necessary, we may assume that n ≥ 0. Choose
m ∈ N0 maximal with the property that

|τ(x[0,m[)| ≤ |g(f(x)[0,n[)|

and set i = |g(f(x)[0,n[)| − |τ(x[0,m[)|. Since 0 ≤ i < |τ(xm)| and

σi(τ(σm(x))) = σ|g(f(x)[0,n[)|(τ(x))

= σ|g(f(x)[0,n[)|(g(f(x)))

= g(σn(f(x)))

= g(f(y))

= τ(y),
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Augmenting dimension group invariants 7

we get by Mossé recognizability ([30], cf. [14, Corollary 12]) that i = 0, σm(x) = y

and |τ(x[0,m[)| = |g(f(x)[0,n[)|. Hence |f(x[0,m[)| = n. We conclude that m = n = 0
because if m > 0, then

s|f(x0)| < |f(x0)| ≤ |f(x[0,m[)| = n,

which would make it impossible for s|f(x0)| to equal t|f(y0)| + n. Hence x = y,
and s|f(x0)| = t|f(y0)| so that s = t as desired.

To see that F is surjective, let x ∈ Xυ and s ∈ [0, 1[ be given. Choose y ∈ Xυ

and k ∈ [0, |υ(y0)|[ such that x = σk(υ(y)). Let

n = max{n′ ∈ N0 | |f(g(y)[0,n′[)| ≤ s+ k}

and

r =
s+ k − |f(g(y)[0,n[)|

|f(g(y)n)|
.

Then r ∈ [0, 1[, and

F ([σn(g(y)), r]) = [f(σn(g(y))), r|f(g(y)n)|]
= [σ|f(g(y)[0,n[))|(f(g(y))), r|f(g(y)n)|]
= [σ|f(g(y)[0,n[))|(υ(y)), r|f(g(y)n)|]
= [σk(υ(y)), s] = [x, s]

because k + s = |f(g(y)[0,n[))|+ r|f(g(y)n)|.
We have established that F is a homeomorphism. Since it obviously maps orbits

to orbits in an orientation-preserving way, Xτ and Xυ are flow equivalent. �

Corollary 2.8. If τ is simplified to τ ′, then Xτ
∼=f Xτ ′ .

Example 2.9. The substitutions τ and υ are aperiodic, elementary, primitive, and

proper on {a, b, c, d}.

3. Components of the invariant
3.1. Basic quantities Fix a primitive and aperiodic substitution τ . In this
section, we shall associate a collection of combinatoric data to τ which we shall
employ in our theoretical work, as well as in our invariants, below.

As we are navigating mathematical waters close to known undecidable quantities,
the reader might worry about computability of these data. Fortunately, we have
been able to find efficient algorithms for computing all the data described below.
The algorithms are suffiently simple that we have found ourselves capable of
implementing them in a Java applet ([9]), and although we have not studied the
complexity of these algorithms, we have found that they can compute invariants
for substitutions such as τ and υ in a matter of seconds. A presentation of
our algorithmic results, proved by methods partially related to [2], will appear
elsewhere, in [8].

We say (cf. [19]) that y ∈ Xτ is left special if there exists y′ ∈ Xτ such that

y−1 6= y′−1 π+(y) = π+(y′).
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2

3

5

...5141141241235141

...4124132141521412351

1412412351414124...

41241235141241412412351..

2

4

Figure 1. Special words for ω

By [34, p. 107] and [3, Theorem 3.9], there is a finite, but nonzero, number of left
special words.

We say that the left special word y is adjusted if σ−n(y) is not left special for
any n ∈ N, and that y is cofinal if σn(y) is not left special for any n ∈ N. Thinking
of left special words as those which are not deterministic from the right at index
−1, the adjusted and cofinal left special words are those where this is the leftmost
and rightmost occurrence of nondeterminacy, respectively.

Let x, y ∈ Xτ . If there exist an n and an M such that xm = yn+m for all m > M

then we say that x and y are right shift tail equivalent and write x ∼r y. One
defines right special elements using

y0 6= y′0 π−(y) = π−(y′),

and left shift tail equivalence and ∼l in the obvious way. When a left special word
y is cofinal, every word in its right shift tail equivalence class will end in π+(y).

Remark 3.1. Quite often, all the special words of a substitution are simultaneously
adjusted and cofinal. There are exceptions, though, as illustrated by Figure 1
which indicates the relations among all the special words of the aperiodic and
primitive substitution ω on {1, 2, 3, 4, 5} given by ω(1) = 123514, ω(2) = 124, ω(3) =
13214, ω(4) = 14124, ω(5) = 15214. The element

...514114124123514152.1412412351414124...

is an example of a cofinal left special element which is not adjusted left special.
Shifting it to

...51411412412351415.21412412351414124...

one achieves an element which is adjusted left special, but not cofinal. Shifting
once more, one gets an element which is simultaneously adjusted and cofinal right
special.
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Definition 3.2. When τ is an aperiodic and primitive substitution, we denote the
number of right shift tail equivalence classes of left special elements of Xτ by nτ .

It is not hard to see directly that this number is a flow invariant for substitutional
systems, but in fact it will follow from our main result as noted in Theorem 6.2.

As described in Section 2.2 there is an algorithmic way of passing from a given
aperiodic and primitive substitution τ ′ to an aperiodic, elementary, primitive and
proper substitution τ in the same flow equivalence class. Now as concluded in [8,
Remark

Definition 3.3. We say that a substitution τ is basic if it has the form (τ ′)n for
some aperodic, elementary, primitive and proper substitution τ ′, and if all its left
special words have the form

· · · τ3(v)τ2(v)τ(v)vu.wτ(w)τ2(w)τ3(w) . . . (3.1)

for suitable u, v, w ∈ L(Xτ )\{ε} such that

τ(u) = vuw. (3.2)

As outlined above, there is an algorithm yielding for every aperiodic and
primitive substitution υ a basic substitution τ = (τ ′)n with Xυ

∼=f Xτ . We may
hence work only with basic substituions as long as we are interested in invariants
of flow equivalence.

Our paper [8] provides algorithms for computing and representing each left
special element in Xτ as in (3.1) and (3.2), to determine which of these elements
are adjusted or cofinal, and which among them are right shift tail equivalent. Thus
we may, in what follows, use the convenient notation

[w]− = · · · τn+1(w)τn(w)τn−1(w) · · · τ(w)w ∈ a−N

[w]+ = wτ(w) · · · τn−1(w)τn(w)τn+1(w) · · · ∈ aN0

to describe all the (adjusted, cofinal) left special words.

Example 3.4. Both τ and υ are basic substitutions. The left special elements of

Xτ are

[accd]−a.[dbb]+, [aacd]−c.[dbb]+, [acdc]−b.[adb]+, [accb]−d.[adb]+.

which are all simultaneously adjusted and cofinal. The left special elements of Xυ

are

[accbb]−a.[dd]+, [aacbb]−c.[dd]+, [acbc]−d.[abd]+, [accd]−b.[abd]+,

also all adjusted and cofinal. Since [dbb]+ 6∼r [adb]+ and [dbb]+ 6∼r [adb]+,

nτ = nυ = 2.

Definition 3.5. When τ is a basic substitution, equipped with some ordering of
the right shift tail equivalence classes containing left special elements, we define
pτ ∈ Nnτ by

pτ = (p1, . . . , pnτ ),

where pi + 1 is the number of adjusted left special words in each such class.
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10 T.M. Carlsen and S. Eilers

Note that by the definition of right special words, pi ≥ 1 for all i.
Enumerating the output of our algorithm we organize all the adjusted left special

words as

y1
1, y

1
2, . . . , y

1
p1+1

y2
1, y

2
2, . . . , y

2
p2+1

...

ynτ
1 , ynτ

2 , . . . , ynτ
pnτ +1

where
yj
k = [vj

k]−uj
k.[w

j
k]+, τ(uj

k) = vj
kuj

kwj
k.

Finally, we denote the last letter of each word uj
k by aj

k.
We further choose one cofinal left special element in each right tail equivalence

class, and denote it ỹj . As above, we write

ỹj = [̃vj ]−ũj .[w̃j ]+, τ(ũj) = ṽj ũjw̃j .

and denote by ãj the last letter of ũj .

3.2. Matrices The number #[a,w] counts the number of occurrences of the letter
a in the word w. As usual (cf. [14]) one associates to any substitution τ the
abelianization matrix which is the |a| × |a|-matrix AAAτ given by

(AAAτ )a,b = #[b, τ(a)].

Example 3.6.

AAAτ = AAAυ =


2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2

 .
We shall define a rectangular matrix based on different data of the same nature.
The reader may share our initial surprise that this definition will eventually lead
to an invariant of conjugacy and flow equivalence.

Definition 3.7. To a basic substitution τ one associates the nτ × |a|-matrix EEEτ

given by

(EEEτ )j,b =

(
pj+1∑
k=1

eτ,aj
k,wj

k
(b)

)
− e

τ,eaj
, ewj (b)

with
eτ,a,w(b) = max(0,#[b, τ(a)]−#[b, aw])

and with aj
k, ã

j and wj
k, w̃

j given as in Section 3.1.

In all the applications of eτ,a,w we either have that τ(a) is a proper subword of
aw, in which case the term vanishes, or that τ(a) ends in aw, in which case the
contribution of the term is a count of the remaining letters in τ(a)
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Augmenting dimension group invariants 11

Example 3.8. Enumerating the elements given Example 3.6 in the order y1
1, y

1
2 =

ỹ1, y2
1, y

2
2 = ỹ2, we would have

EEEτ =
[
#[•, accd] + #[•, aacd]−#[•, aacd]
#[•, acdc] + #[•, accb]−#[•, accb]

]
=
[
1 0 2 1
1 0 2 1

]
and similarly

EEEυ =
[
#[•, accbb]
#[•, acbc]

]
=
[
1 2 2 0
1 1 2 0

]
.

Definition 3.9. To a basic substitution τ one associates the (|a|+nτ )× (|a|+nτ )-
matrix

ÃAAτ =
[
AAAτ 0
EEEτ IdIdId

]
.

4. Matsumoto K-groups
The Matsumoto K-groups with which we are concerned in the present paper can
be efficiently defined directly, using the concept of past equivalence. They were,
however, discovered as the (ordered) K-groups associated to certain classes of C∗-
algebras. The results in the present paper do not depend directly or indirectly on
an analysis of C∗-algebras, so we shall employ the most fundamental definition and
repeat it for the benefit of the reader in section 4.1 below.

However, since our results were developed in this category and subsequently
translated to a more basic setting, and since we do have further results (see Section
6) which we do not know how to get without this machinery, we find that a brief
outline of how our work is positioned in an operator algebraic setting may be in
order. We do this in section 4.3 below, which may be skipped by any reader not
operator algebraically inclined.

4.1. Past equivalence Let X be a two-sided shift space. For every x ∈ π+(X) and
every k ∈ N we set

Pk(x) = {µ ∈ L(X) | µx ∈ π+(X), |µ| = k},

and define for every l ∈ N an equivalence relation ∼l on π+(X) by

x ∼l y ⇔ Pl(x) = Pl(y).

Following Matsumoto ([25], [27]), we denote by [x]l the equivalence class of x and
refer to the relation as l-past equivalence.

Obviously the set of equivalence classes of the l-past equivalence relation ∼l is
finite. We will denote the number of such classes m(l) and enumerate them E l

s with
s ∈ {1, . . . ,m(l)}. For each l ∈ N, we define an m(l + 1)×m(l)-matrix IIIl by

(IIIl)rs =
{

1 if E l+1
r ⊆ E l

s

0 otherwise,
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12 T.M. Carlsen and S. Eilers

and note that IIIl induces a group homomorphism from Zm(l) to Zm(l+1). We denote
by ZX the group given by the inductive limit

lim
−→

(Zm(l), IIIl).

For a subset E of π+(X) and a finite word µ we let µE = {µx ∈ π+(X) | x ∈ E}.
For each l ∈ N and a ∈ a we define an m(l + 1)×m(l)-matrix

(LLLl
a)rs =

{
1 if ∅ 6= aE l+1

r ⊆ E l
s

0 otherwise,

and letting LLLl =
∑

a∈a LLLl
a we get a matrix inducing a group homeomorphism from

Zm(l) to Zm(l+1). Since one can prove that LLLl+1◦IIIl = IIIl+1◦LLLl, a group endomorphism
λ on ZX is induced.

Definition 4.1. [Cf. [25, Theorem 4.9], [27], [29, Theorem], [5, pp. 67-68]] Let
X be a two-sided shift space. The group

K0(X) = ZX/(Id−λ)ZX ,

is a conjugacy invariant of X and π+(X), and a flow invariant of X.

4.2. An intermediate description The dimension group DG(X,σ) of a Cantor
minimal system (X,σ) — a dynamical system where X is a Cantor set in which
every σ-orbit is dense — is the cokernel of the map

Id−(σ−1)] : C(X,Z) −→ C(X,Z),

equipped with the quotient order induced from C(X,N0).
When τ is an aperiodic and primitive substitution, (Xτ , σ) is a Cantor minimal

system. The technical basis of our results is a similar description of the Matsumoto
K0-group of a basic substitution as the cokernel of a certain map, based on a set
of choices made as described in Section 3.1. Such a description can, for the special
kind of shift spaces considered here, be inferred from a theoretically straightforward,
but rather technical, analysis of l-past equivalence relation (or the lambda-graph)
of the substitutional dynamics, noting that it may be correlated with the structure
of the left special words. It is not the same cokernal description as the – much more
general – basic tool in [27]. We defer the proofs of this to our paper [10], and shall
here just present the results, laying out notation along the way.

Fix a basic substitution τ . We shall work extensively with elements of Znτ , and
fix here notation for such. We shall prefer the index j ∈ {1, . . . , nτ} and write

x =
(
xj
)nτ

j=1
, y =

(
yj
)nτ

j=1
, xi =

(
xj

i

)nτ

j=1
,

etc., for such vectors. The vector δj0 has zero entries except at index j0, where the
entry is 1.

We now define a group

Gτ = C(Xτ ,Z)⊕
∞∑

i=0

Znτ
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Augmenting dimension group invariants 13

and, based on a set of choices made as described in Section 3.1, a map Aτ : Gτ −→
Gτ given hereon by

Aτ (f, [x0, x1, . . . ]) =f ◦ σ−1,

((pj+1∑
k=1

f(σ−1(yj
k))

)
− f(σ−1(ỹj))

)nτ

j=1

, x0, x1, . . .

 ,

with yj
k and ỹj defined as in Section 3.1 above. The following result of [10] forms

the basis of our alternative characterization of K0(Xτ ) involving Gτ and Aτ .

Proposition 4.2. When τ is a basic substitution, then K0(Xτ ) is isomorphic to

the cokernel of the map Aτ .

4.3. Related C∗-algebras There is a universal construction associating to most
dynamical systems a C∗-algebra called the crossed product. In the seminal case
of a Z-action given by a homeomorphism φ of a compact Hausdorff space X,
one first passes to the C∗-dynamical system of the transpose φ] acting on C(X)
by composition, and constructs therefrom a C∗-algebra denoted C(X) oφ] Z
which captures the dynamics in non-commutative structure. A crossed product
algebra C(X) oσ] Z can hence be associated to each two-sided shift space, and
the universality of the construction proves that such an associated C∗-algebra is
a conjugacy invariant. But in this special case, another invariant C∗-algebra is
available to us via the one-sided shift π+(X).

The C∗-algebras first considered by Matsumoto can be constructed from such a
one-sided shift space in several equivalent ways – by a universal construction based
on generators and relations, or by invoking standard constructions in C∗-algebras
based on either groupoids ([7]) or Hilbert C∗-bimodules ([5]). The original approach
in [24] based on a Fock space construction may in some cases lead to a different
algebra, see [12]. Each of these approaches have independent virtues and add to the
accumulated value of this concept. When a one-sided shift space X+ is given, we
denote this C∗-algebra by OX+ . Such C∗-algebras can be used to provide conjugacy
invariants up to either one-sided or two-sided conjugacy as follows. Here and below,
K denotes the C∗-algebra of compact operators on a separable Hilbert spaces.

Theorem 4.3. [[5, Theorem 4.1.4], [6]] Let X+ and Y+ be one-sided shift spaces.

We have

X+ ' Y+ =⇒ OX+ ' OY+ .

Furthermore, when X and Y are two-sided shift spaces, we have

X ' Y =⇒ X ∼=f Y =⇒ Oπ+(X) ⊗K ' Oπ+(Y) ⊗K.

This observation goes back to Matsumoto for a large family of shift spaces with
the so-called property (I), see [24, Proposition 5.8], [28, Corollary 6.2] and [26,
Lemma 4.5]. However, the one-sided shift spaces associated to the two-sided shifts
under investigation, those of the form π+(Xτ ), rarely have this property.
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14 T.M. Carlsen and S. Eilers

Definition 4.4. Oτ = Oπ+(Xτ ).

These C∗-algebras bear relevance for the groups considered in the present paper
through a K-functor. In fact,

DG(Xτ ) = K0(C(Xτ ) oσ] Z)

K0(Xτ ) = K0(Oτ ).

In general, the C∗-algebras C(X) oσ] Z and Oπ+(X) will be very different. For
instance, when X = XF where F is a finite set (a so-called shift of finite type), the
crossed product will always have a very rich ideal structure, whereas the algebra
considered by Matsumoto becomes the Cuntz-Krieger algebra associated to F ,
which is a simple C∗-algebra under modest assumptions. When F = Fτ , as proved
in [7], there is an extension of C∗-algebras

0 // Knτ // Oτ
// C(Xτ ) oσ] Z // 0 (4.3)

showing that Oτ is non-simple, with the crossed product as a quotient.
Since C(Xτ )oσ] Z is simple because the underlying dynamical system is minimal,

this gives a complete description of the ideal structure of Oτ . However, a reader
unfamiliar with the extension theory of C∗-algebras should probably be explicitly
warned that such a description offers very little concrete information about the
algebra in general. In many cases, the theorem of Brown-Douglas-Fillmore in
conjunction with the Universal coefficient theorem in Kasparov’s theory proved
by Rosenberg and Schochet shows that there are uncountably many nonisomorphic
algebras having such a decomposition.

5. Inductive limit descriptions
A main accomplishment in [14] is the description of DG(Xτ ) (see Section 4.2) as a
stationary inducetive limit with matrices for the connecting maps read off directly
from the substitution. A main result is the following.

Theorem 5.1. [[14], Theorem 22(i)] There is an order isomorphism

DG(Xτ ) ' lim
−→

(Z|a|,AAAτ )

where each Z|a| is ordered by

(xa) ≥ 0 ⇐⇒ ∀a ∈ a : xa ≥ 0.

We have found analogous results for the ordered group K0(Xτ ), but will in the
present paper restrain ourselves to give, in Theorem 5.8 below, an inductive limit
description of K0(Xτ ) as a group.

Computing the order structure requires a deeper analysis of the interrelations
among certain C∗-algebras, employing the fact that DG(Xτ ) = K0(C(Xτ ) oσ] Z)
and K0(Xτ ) = K0(Oτ ), cf. Section 4.3. We defer this to [11], but the interested
reader is referred to Section 6 for a brief overview of our results.
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Augmenting dimension group invariants 15

5.1. Kakutani-Rohlin partitions Theorem 5.1 is achieved from the cokernal
description of the dimension group (see Section 4.2 above) using a sequence of
Kakutani-Rohlin partitions of Xτ and direct computations of the actions hereupon
by τ . We are going to follow the lead of [14], adapting crucial techniques to our
somewhat more complicated setting. As in that paper, we abbreviate

[a] = {x ∈ Xτ | x0 = a},

and note that by [14, Corollary 13] — a consequence of the work by Mossé [31],
[30] — the family of sets

σ−iτm[a], a ∈ a , i ∈ {0, . . . , |τ(a)m| − 1}, (5.4)

forms a (clopen) disjoint partition of Xτ for each m ∈ N, when τ is any aperiodic
substitution.

To set up notation and motivate our adaptation, we will sketch how the
Kakutani-Rohlin partitions are used in [14] to prove Theorem 5.1 in the case of
proper substitutions. We do this to allow references to parts of this proof in our
proof of Theorem 5.8 below.

For any fixed m ∈ N, we use the notation Ξ = (ξi,a) to denote a collection of
integers where a ∈ a, i ∈ {0, . . . , |τm(a)| − 1}. For each such collection, we define a
function on Xτ by

fΞ =
∑
a∈a

|τm(a)|−1∑
i=0

ξi,a1σ−iτm[a].

Definition 5.2. Fix m ∈ N. We define CEτ [m] as the set all integer collections
defined above, and let

rkτ [m] = {fΞ ∈ C(Xτ ,Z) | Ξ ∈ CEτ [m]}.

The subset of CEτ [m] with the further property that

ξ0,a = ξ0,b ∀a, b ∈ a

we denote by CEc
τ [m], and let rkc

τ [m] be the corresponding subspace of rkτ [m].

Our properness assumption enters our proof as follows, cf. [14, Proposition
14(iv)]:

Proposition 5.3. If τ is a proper, primitive and aperiodic substitution, then

∞⋃
m=1

rkτ [m] =
∞⋃

m=1

rkc
τ [m] = C(Xτ ,Z).

As the family generates C(Xτ ,Z), the proof of Theorem 5.1 may be reduced to
check that ψm+1 = AAAτ ◦ ψm where

ψm : rkτ [m] −→ Z|a|, ψm

∑
a∈a

|τm(a)|−1∑
i=0

αi,a1σ−iτm[a]

 =

|τm(a)|−1∑
i=0

αi,•


•∈a
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16 T.M. Carlsen and S. Eilers

so that a map
ψ∞ : C(Xτ ,Z) −→ lim

−→
(Z|a|,AAAτ )

is induced, and to check that this map is surjective and has the property that
ker(ψ∞) = Im(Id−(σ−1)]). An isomorphism

ψ∞ : C(Xτ ,Z)/ Im(Id−(σ−1)]) −→ lim
−→

(Z|a|,AAAτ )

is then induced.
We need to consider the interrelations between sets of the form σ−nτm+1[a] and

σ−n′τm[a′]. Doing so is eased by the following perhaps somewhat counterintuitive
notation, which we shall use for the remainder of Section 5.

Notation 5.4. Let w ∈ a]. By w[h] we denote the letter at position h in w from
right to left, starting with index 0 at the rightmost letter. By w]h,0] we denote the

subword of w consisting of the h rightmost letters.

It is straightforward (but tedious) to check that

σ−(|τm(τ(a)]h,0])|+k)τm+1[a] ⊆ σ−kτm[τ(a)[h]] (5.5)

for any a ∈ a, m ∈ N0, h ∈ {0, . . . , |τ(a)| − 1} and k ∈ N0. Letting
k ∈ {0, . . . , |τm(τ(a)[h])|} one covers the sets in the (m + 1)st level of the
Rohlin-Kakutani partition exactly once. Consequently, rkτ [m] ⊆ rkτ [m + 1] and
rkc

τ [m] ⊆ rkc
τ [m+ 1].

We end this section by defining a numerical quantity associated to the kind of
words used to describe right special elements and observing two basic properties of
it:

Definition 5.5. For w ∈ L(Xτ ), and m ∈ N we set `(m,w) =
∑m−1

i=0 |τ i(w)|. We
also let `(0, w) = 0.

Observation 5.6. When [v]−u.[w]+ ∈ X for u, v, w ∈ L(Xτ )\{ε} with τ(u) = vuw,
and u ends in a ∈ a,

[v]−u.[w]+ ∈ σ−`(m,w)τm[a]

for every m ∈ N0.

Proof: An inductive argument based on

τ([v]−u.[w]+) = [τ(v)]−vuw.[τ(w)]+ = σ|w|([v]−u.[w]+).

�

Observation 5.7. Let u, v, w ∈ L(Xτ )\{ε} with τ(u) = vuw, and assume that u
ends in a ∈ a. For any m ∈ N0 and h ≤ |τ(a)|, we have

|τm(τ(a)]h,0])| ≥ `(m+ 1, w) + 1

if and only if h ≥ |w|+ 1.
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Proof: Suppose first that h ≤ |w|. Then τ(a)]h,0] a w so that

|τm(τ(a)]h,0])| ≤ |τm(w)| ≤ `(m+ 1, w).

Induction after m is required to prove the other implication, so assume that
h ≥ |w| + 1 and note that this assumption is equivalent with the case m = 0. For
m > 0 we further note that aw a τ(a)]h,0] because of the way that u, a and w are
interrelated. Thus

|τm(τ(a)]h,0])| ≥ |τm(a)|+ |τm(w)|
≥ |τm−1(τ(a)]h,0])|+ |τm(w)|
≥ `(m,w) + 1 + |τm(w)|
= `(m+ 1, w) + 1

using the induction hypothesis at the third inequality sign. �

5.2. A stationary inductive system The main result of our paper is the following:

Theorem 5.8. Let τ be a basic substitution. There is a group isomorphism

K0(Xτ ) ' lim
−→

(Z|a| ⊕ Znτ/pτZ, ÃAAτ ).

We recall that there is an algorithmic way of passing from any aperiodic and
primitive substitution to one which is basic, staying in the same flow equivalence
class. Since K0 is an invariant of flow equivalence, the result above can be used to
compute the Matsumoto K0-group of any aperiodic and primitive substitution.

We note right away that the group K0(Xτ ) has the group DG(Xτ ) computed in
[14], as a quotient. The corresponding kernel is simply Znτ/pτZ. But as we shall
see, this extension is not split in general, making room for storage of additional
information in the non-vanishing cross-term EEEτ .

Corollary 5.9. Let τ be a basic substitution. The short exact sequence

0 // Znτ/pτZ P // Z|a| ⊕ Znτ/pτZ R // Z|a| // 0

induces a short exact sequence

0 // Znτ/pτZ P∞ // K0(Xτ )
R∞ // DG(Xτ ) // 0 .

Proof: Observe that P ◦ IdZnτ/pτ Z = ÃAAτ ◦ P and R ◦ ÃAAτ = AAAτ ◦R. �

Definition 5.10. When Ξ ∈ CEτ [m], we define Ξ̃, Ξ̂ ∈ CEτ [m] by

ξ̃i,a =

{
ξi+1,a 0 ≤ i < |τm(a)| − 1

ξ0,a i = |τm(a)| − 1,

ξ̂i,a =
|τm(a)|−1∑

k=i

ξk,a.
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18 T.M. Carlsen and S. Eilers

Lemma 5.11. If Ξ ∈ CEc
τ [m] then feΞ = fΞ ◦ σ−1.

Proof: Let c denote the mutual value at the lower level of Ξ. First note that if
x ∈ σ−iτm[a] is given with i < |τm(a)| − 1, σ−1(x) ∈ σ−(i+1)τm[a]. Further, if
x ∈ σ−(|τm(a)|−1)τm[a], say with x = σ−(|τm(a)|−1)(y) where y ∈ τm([a]), we can
write

σ−1(x) = σ−|τ
m(a)|τm(y) = τm(σ−1(y))

such that σ−1(x) ∈ σ−0τm[b] for b chosen as the second letter of y. Thus for any
x ∈ Xτ , we have

feΞ(x) =
{
ξi+1,a x ∈ σ−iτm[a], i < |τm(a)| − 1
c x ∈ σ−iτm[a], i = |τm(a)| − 1

= fΞ(σ−1(x)).

�

Lemma 5.12. If Ξ ∈ CEτ [m] and satisfies

|τm(a)|−1∑
i=0

ξi,a = 0 ∀a ∈ a, (5.6)

then Ξ̂ ∈ CEc
τ [m], and

(Id−Aτ )(fbΞ, [0, 0, . . . ]) =fΞ,

 |τm(eaj

)|−1∑
i=`(m, ewj

)+1

ξ
i,eaj −

pj+1∑
k=1

|τm(aj
k)|−1∑

i=`(m,wj
k)+1

ξi,aj
k

nτ

j=1

, 0, 0, . . .


 .

Proof: By (5.6), Ξ̂ ∈ CEc
τ [m]. So we get by Lemma 5.11 that fbΞ ◦ σ−1 = febΞ. By

(5.6) again,

Ξ̂− ˜̂Ξ = Ξ.

Finally according to Observation 5.6,

fbΞ(σ−1(yj
k)) = ξ̂`(m,wj

k)+1,aj
k

=
|τm(aj

k)|−1∑
i=`(m,wj

k)+1

ξi,aj
k

and similarly for ỹj . �
We are now ready to define the family of maps which shall give the desired

identification between Gτ/ Im(Id−Aτ ) and a stationary inductive system.

Definition 5.13. The maps

Ψm : rkτ [m]⊕
m∑

i=0

Znτ −→ Z|a| ⊕ Znτ/pτZ

are given by

Ψm(fΞ, [x0, x1, . . . , xm]) =|τm(aj
k)|−1∑

i=0

ξi,a,

 m∑
i=0

xj
i +

pj+1∑
k=1

|τm(aj
k)|−1∑

i=`(m,wj
k)+1

ξi,aj
k
−

|τm(eaj
)|−1∑

i=`(m, ewj
)+1

ξ
i,eaj

nτ

j=1

+ pτZ

 .
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Note that Ψm is well-defined because σ−iτm[a] 6= ∅.
We have seen in Lemma 5.11 that (σ−1)] maps rkc

τ [m] to rkτ [m]. Therefore, Aτ

restricts to a map

rkc
τ [m]⊕

m−1∑
i=0

Znτ // rkτ [m]⊕
m∑

i=0

Znτ

which we shall also denote by Aτ .

Proposition 5.14. The sequence

rkc
τ [m]⊕

m−1∑
i=0

Znτ
Id−Aτ // rkτ [m]⊕

m∑
i=0

Znτ
Ψm // Z|a| ⊕ Znτ/pτZ

is exact.

Proof: Direct computations, using among other things that there are pj +1 positive
ξ-terms and one negative ξ-term in the j entry of the second coordinate of the image
of Ψm, show that Ψm ◦ (Id−Aτ ) = 0. And if

(fΞ, [x0, . . . , xm]) ∈ ker Ψm,

then the conditions of Lemma 5.12 are met for Ξ, and Ξ̂ ∈ CEc
τ [m]. Note also that

for suitable c ∈ Z,

m∑
i=0

xj
i +

pj+1∑
k=1

|τm(aj
k)|−1∑

i=`(m,wj
k)+1

ξi,aj
k

−
|τm(eaj

)|−1∑
i=`(m, ewj

)+1

ξ
i,eaj = pjc

for each j ∈ {1, . . . , nτ}. With C ∈ CEc
τ [m] a constant scheme which each entry set

to c, we have that Ξ̂ + C induces a function g ∈ rkc
τ [m] for which

(Id−Aτ )

(
g,

[
−

m∑
i=1

xi,−
m∑

i=2

xi, . . . ,−
m∑

i=m−1

xi,−
m∑

i=m

xi

])

=

fΞ,
− m∑

i=1

xi −

pj+1∑
k=1

|τm(aj
k)|−1∑

i=`(m,wj
k)+1

ξi,aj
k
−

|τm(eaj
)|−1∑

i=`(m, ewj
)+1

ξ
i,eaj + cpτ

 , x1, . . . , xm


= (fΞ, [x0, x1, . . . , xm]).

�
We shall work with the following basic elements of rkτ [m]⊕

∑m
i=0 Znτ . For each

• ∈ a, we let

em
• = (1τmd•e, [0, . . . , 0])

fm
i = (0, [δi, 0, . . . , 0])
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20 T.M. Carlsen and S. Eilers

with δi referring to Kronecker delta. Further, we define a vector ∆• ∈ Z|a| using
Kronecker delta again.

Lemma 5.15. For each m,

Ψm(em
• ) = (∆•, 0) Ψm(fm

j ) = (0, δj + pτZ),

and under the imbedding rkτ [m] ↪→ rkτ [m+ 1]

Ψm+1(em
• ) = (AAA∆•,EEE∆• + pτZ) Ψm+1(fm

j ) = (0, δj + pτZ).

Proof: The set of claims concerning fm
j are straightforward; the second coordinate

of Ψm(em
• ) vanishes as described because evaluation begins at a nonzero index. To

compute Ψm+1(em
• ), we note that as a consequence of (5.5)

τm d•e =
⋃

a ∈ a

j ∈ {1, . . . , |τ(a)|}
τ(a)[j] = •

σ−|τ
m(τ(a)]j,0])|τm+1[a].

This means that the element in CEτ [m+ 1] inducing the function of em
• is given by

ξi,a =

{
1 ∃h : τ(a)[h] = •, i = |τm(τ(a)]h,0])|
0 otherwise.

Now

|τm+1(a)|−1∑
i=0

ξi,a =
|τm+1(a)|−1∑

i=0

#{h | τ(a)[h] = •, i = |τm(τ(a)]h,0])|}

= #{h | τ(a)[h] = •}
= #[•, τ(a)] = (AAA)a,•

and similarly

|τm+1(aj
k)|−1∑

i=`(m+1,wj
k)+1

ξi,aj
k

=
|τm+1(aj

k)|−1∑
i=`(m+1,wj

k)+1

#{h | τ(aj
k)[h] = •, i = |τm(τ(a)]h,0])|}

= #{h | τ(aj
k)[h] = •, |τm(τ(aj

k)]h,0])| ≥ `(m+ 1,wj
k) + 1}

= #{h | τ(aj
k)[h] = •, h ≥ |wj

k|+ 1}

according to Lemma 5.7. If |τ(aj
k)| ≤ |wj

k| + 1 this sum evaluates to 0, otherwise
we get a count of the letter • in what is to the left of aj

kwj
k in τ(aj

k), corresponding
to our Definition 3.7. The same argument applies to ãj and w̃j . Thuspj+1∑

k=1

|τm+1(aj
k)|−1∑

i=`(m+1,wj
k)+1

ξi,aj
k

−
|τm(eaj

)|−1∑
i=`(m, ewj

)+1

ξ
i,eaj = (EEEτ )j,•

as desired. �
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Proposition 5.16. The diagram

rkτ [m]⊕
∑m

i=0 Znτ
Ψm //

� _

��

Z|a| ⊕ Znτ/pτZ

eAAA
��

rkτ [m+ 1]⊕
∑m+1

i=0 Znτ

Ψm+1

// Z|a| ⊕ Znτ/pτZ

commutes.

Proof: By Lemma 5.15 and the definition of ÃAAτ , the diagram commutes on em
•

and fm
j , and on the subgroup that they generate. For a general (f, [x0, . . . , xm]) ∈

rkτ [m]⊕
∑m

i=0 Znτ we note that Proposition 5.14 proves the claim as the images of
em
• and fm

j generate Z|a| ⊕ Znτ/pτZ. �
Proof of 5.8: By Proposition 5.14 and Proposition 5.16, the diagram

rkc
τ [m]⊕

m−1∑
i=0

Znτ

� _

��

Id−Aτ // rkτ [m]⊕
m∑

i=0

Znτ
Ψm //

� _

��

Z|a| ⊕ Znτ/pτZ

eAAA
��

rkc
τ [m+ 1]⊕

m∑
i=0

Znτ
Id−Aτ // rkτ [m+ 1]⊕

m+1∑
i=0

Znτ

Ψm+1

// Z|a| ⊕ Znτ/pτZ

is commutative and exact for each m. Furthermore, since Lemma 5.15 shows that
Ψm is surjective for each m, the rightmost horizontal maps in the diagram are
surjections. Since taking inductive limits is an exact functor, we get that

Gτ
Id−Aτ // Gτ

Ψ∞ // lim
−→

(Z|a| ⊕ Znτ/pτZ, ÃAAτ ) // 0

is exact, where we have used Lemma 5.3 to identify⋃
m∈N

(
rkc

τ [m]⊕
m−1∑
i=0

Znτ

)
=
⋃

m∈N

(
rkτ [m]⊕

m−1∑
i=0

Znτ

)
= Gτ .

�

Example 5.17. The matrices

[
1 1 1 1 0 0
0 0 0 0 1 −1

]


2 0
2 0
2 0
2 0
0 1
0 0


induce maps χ : Z4 ⊕ Z2/(1, 1)Z −→ Z2 and η : Z2 −→ Z4 ⊕ Z2/(1, 1)Z with the

property that χ ◦ η = [ 8 0
0 1 ] and η ◦ χ = ÃAAτ ; the latter since[

0 0 0 0 1 −1
0 0 0 0 0 0

]
=
[
1 0 2 1 1 0
1 0 2 1 0 1

]
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as a map from Z4 ⊕ Z2/(1, 1)Z to Z2/(1, 1)Z. Similarly, we may reduce our

description of K0(Xυ) to a stationary system with [ 8 0
2 1 ].

One now easily finds that

K0(Xτ ) ' Z[
1
2
]⊕ Z

and, by
[

8−k 0
−2 7

]
[ 8 0
2 1 ] =

[
81−k 0
−2 7

]
, that

K0(Xυ) = {(8−kx, 7y − 2x) ∈ Q2 | k ∈ N, x, y ∈ Z}.

One sees that K0(Xτ ) 6' K0(Xυ) – and hence that Xτ 6∼=f Xυ – by proving that any

element in K0(Xυ) which is divisibe by any power of two is also divisible by seven.

This is not the case for K0(Xτ ).

6. Finer invariants
6.1. Symmetrized invariants Our focus on left special elements makes our
invariant non-symmetric. It is easy to find examples of pairs of substitutions
τ, υ which cannot be distinguished by our invariant, but such that their opposites
τ−1, υ−1 – the same substitutions, but read from right to left – can.

Thus a strictly finer flow invariant may be achieved by considering K0(Xτ ) ⊕
K0(Xτ−1).

6.2. Pointed groups The K0-group associated to a unital C∗-algebra posseses a
distinguished element [1] corresponding to the unit of the C∗-algebra. This element
is an invariant of isomorphism of such algebras, so according to Theorem 4.3 we
have that (K0(Xτ ), [1]) is an invariant of one-sided conjugacy of π+(Xτ ).

When τ is basic, [1] is the image of (1, . . . , 1) ⊕ 0 from the first copy of
Z|a| ⊕ Znτ/pτZ in our description of K0(Xτ ). Since this distinguished element is
not an invariant of flow equivalence we do not at present know how to compute it
when τ is simplifiable.

6.3. Ordered groups The K0-group associated to any C∗-algebra posseses a
canonical order structure stemming from the fact that it is given as a Grothendieck
group of a semigroup of equivalence classes of self-adjoint projections. The order
structure may be degenerate in the sense that elements can be simultaneously
positive and negative, but often holds important and natural information on the
algebras in question.

In the case of crossed products associated to Cantor minimal systems, for
instance, the order on the K0-group is part of the complete invariant for (strong)
orbit equivalence given in [17]. Similarly, since it can be given as the K0-groups
of a C∗-algebra, K0(Xτ ) has an order structure which is a flow invariant for the
underlying substitutional dynamics.

In our paper [11] we give examples showing that this ordered group carries more
information than the group itself, by proving that K0(Xτ ) may fail to be order
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isomorphic to K0(Xτ−1), even though the K-groups are isomorphic as groups. We
also give the following complete description of this ordered group:

Theorem 6.1. Let τ be a basic substitution. There is an order isomorphism

K0(Xτ ) ' lim
−→

(Z|a| ⊕ Znτ/pτZ, ÃAAτ )

where each Z|a| ⊕ Znτ/pτZ is ordered by

[(xa), (yi)] ≥ 0 ⇐⇒ ∀a ∈ a : xa ≥ 0.

This result shows in particular that the order on K0(Xτ ) is the quotient order
induced by the order on DG(Xτ ) via the map R∞ considered in the proof of
Theorem 5.9. As will be explained in [11], this phenomenon extends beyond
substitutional shift spaces.

Let us quote another result from [11], stating the potentially finest invariant
conceivable to us from our work above. Such an invariant can be extracted from
the six term exacty sequence associated to the extension (4.3), which becomes

Znτ // K0(Xτ ) // DG(Xτ )

��
Z

OO

0oo 0.oo

To describe the maps, apart from pτ and R∞, we use Q : Znτ −→ Z|a|⊕Znτ/pτZ
defined by

Q(x) = (0, x+ pτZ),

and its composition Q1 with the canonical mapping from the first instance of
Z|a| ⊕ Znτ/pτZ in the inductive system to the inductive limit in our description
of K0(Xτ ):

Corollary 6.2. Let τ be a basic substitution. The exact complex

Kτ : 0 // Z
pτ // Znτ

Q1 // K0(Xτ )
R∞ // DG(Xτ ) // 0,

where Z,Znτ ,K0(Xτ ) and DG(Xτ ) should be considered as ordered groups and

pτ , Q1, R∞ as positive homomorphisms, is a flow invariant of Xτ .

6.4. Open questions It would be most interesting to know exactly which relation
on the substitution shift spaces Xτ is induced by isomorphism of the stabilized
algebraOτ⊗K, or by isomorphism of the invariants mentioned above. Our examples
above show that this relation is stronger than strong orbit equivalence, cf. [17].
There are classification results, notably those of Lin and Su ([22]), which could
apply to the class of C∗-algebras in question, but we have not yet attempted to
pursue this question.

As mentioned above, and documented in [8], the constituents of our invariants
are effectively computable. However, this does not in itself lead to the conclusion
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that isomorphism of our invariants is decidable. Related work by Bratteli et al ([4])
proves decidability of the invariant which is complete for strong orbit equivalence
– it would seem reasonable to expect that the result can be extended.
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Theoret. Comput. Sci. 99 (1992), no. 2, 327–334.

[31] , Reconnaissabilité des substitutions et complexité des suites automatiques, Bull.
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