UNIVERSITAT DE BARCELONA

Departament d’Algebra i Geometria

ON HIGHER ARITHMETIC
INTERSECTION THEORY

Elisenda Feliu i Trijueque






Introduction

The Mordell’s conjecture states that there are a finite number of rational points on a
non-singular algebraic curve C over Q of genus g > 1. The geometric analog of this
conjecture was proved by Manin in 1963 (see [44]), using the Gauss-Manin connection.
This suggested that the geometric tools where more developed than the arithmetic ones.
Arakelov theory was introduced by Arakelov in [3], in order to give analogs of the al-
gebraic geometry results in the field of arithmetic geometry. Arakelov defined a new
notion of divisor class on the non-singular model of an algebraic curve defined over an
algebraic number field. He then defined an intersection theory for these divisor classes,
following the intersection theory of divisors in algebraic geometry. The idea is that one
can compactify a curve defined over the ring of integers of a number field by considering
Green functions on the associated complex curve. This initial work on arithmetic sur-
faces was expanded on by Deligne [16], Szpiro [56] and Faltings [19] among others. These
studies provided results on arithmetic surfaces like the adjunction formula, the Hodge
index theorem and the Riemann-Roch theorem. Mordell’s conjecture was first proved by
Faltings in [18]. A proof of the Mordell’s conjecture using the tools of Arakelov theory,
was given by Vojta in [58].

These studies were generalized to higher dimensions in [24] by Gillet and Soulé, who
defined an intersection theory for arithmetic varieties. That paper was the starting point
of a program aiming to obtain an arithmetic intersection theory, following the steps of
the algebraic intersection theory, but suitable for arithmetic varieties. This program
included, in its initial stages, the definition of arithmetic Chow groups equipped with
an intersection product, the definition of the arithmetic Ky-group and the definition of
characteristic classes leading to Riemann-Roch theorems.

The program should be continued with the development of higher arithmetic inter-
section theory, which should include the definition of higher arithmetic Chow groups
with an intersection pairing, the definition of higher arithmetic K-theory, the definition
of characteristic class maps between them and higher Riemann-Roch theorems.

We will now review the Arakelov program and explain the contribution of this thesis
to its fulfill. We start by studying the algebraic analogues.

Algebraic intersection theory. Let X be an equidimensional algebraic variety and
let CHP(X) be the Chow group of codimension p algebraic cycles. Different approaches
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may be used to equip it with a product structure
CHP(X)® CHY(X) - CHP™(X).

The first theory is based on the moving lemma. Given the class of two irreducible
subvarieties, the method consists of finding representatives that intersect properly. This
approach is valid for quasi-projective schemes over a field. Another approach due to
Fulton and MacPherson is based on the deformation to the normal cone. In this case,
the scheme need not be quasi-projective and is valid for schemes over the spectrum of a
Dedekind domain.

Alternatively, in [23], Gillet and Soulé showed that the intersection theory can be
developed by transferring the product of the algebraic K-groups of a regular noetherian
scheme X to the Chow groups. This relies on the graded isomorphism

P Ko(X)Y = Ko(X)g & @ CHP(X)q,
p=>0 p=>0

where the pieces KO(X)g) are the eigenspaces of the Adams operations ¥* on Ky(X)g
and “ch” is the Chern character.

The commutation relation of the Chern character with push-forward maps is given by
the Grothendieck-Riemann-Roch theorem. Let Td denote the Todd class of the tangent
bundle over an algebraic variety. Let X,Y be regular schemes which are quasi-projective
and flat over the spectrum S of a Dedekind domain and let f : X — Y be a flat and
projective S-morphism. Then, the Grothendieck-Riemann-Roch theorem says that there
is a commutative diagram

Td(X)- ch(-
Ko(X) LY D,>0 CHP(X)g

f*l( |

Td(Y): ch(-
Ko(v) 00 gy CHP(Y)q.

In [7], Bloch developed a theory of higher algebraic Chow groups for smooth algebraic
varieties over a field. If X is such a variety, these groups are denoted by CHP(X,n), for
n,p > 0. He proved that there is an isomorphism

P K.(X)P = K.(X)g = P CHP (X, n)g.

p=>0 p>0

Bloch also gave a product structure on CH* (X, %), which relied on the moving lemma.
This theory established itself as a candidate for motivic cohomology. Since then,
there have been many other proposals for motivic cohomology, which apply to bigger
classes of schemes. Under certain conditions, the new definitions agree with the higher
Chow groups. For this reason, the Bloch Chow groups have remained as a basis and
simple description of motivic cohomology for smooth schemes over certain fields.



Arithmetic Chow groups and arithmetic intersection theory. As mentioned
above, the advent of arithmetic intersection theory in arbitrary dimensions is due to
Gillet and Soulé in [24]. In loc. cit., an arithmetic variety is a regular, quasi-projective
scheme flat over an arithmetic ring. Let X be an arithmetic variety. An arithmetic cycle
on X is a pair (Z,g) where Z is an algebraic cycle and g is a Green current for Z, that
is, a current on the complex manifold associated to X satisfying the relation

ddg + 67 = [w],

with w a smooth differential form and 67 the current associated to Z. Then, the arith-
metic Chow group CH (X) is defined as the quotient of the free abelian group generated
by the arithmetic cycles by an appropriate equivalence relation.

If X is an arithmetic variety, let F, : X(C) — X(C) be the complex conjugation,
and let EP?(X) denote the vector space of C-value differential forms w on X(C) of
type (p,q) that satisfy the relation FX.w = (—1)Pw. Denote by EPP(X) the quotient of
EPP(X) by (imd + im d).

Gillet and Soulé proved the following properties:

(i) The groups CH p(X ) fit into an exact sequence:
CHPVP(X) L Er-1v-1(X) & CH'(X) S CHP(X) — 0, (1)

where CHP~1P(X) is the term Egil’fp(X) of the Quillen spectral sequence (see
[48], §7) and p the Beilinson regulator (up to a constant factor).

(ii) There is a pairing

CH'(X)® CH'(X) - CH"(X)q

turning ®p20 @p(X )o into a commutative graded unitary Q-algebra.

(iii) If X,Y are projective and f : X — Y is a morphism, there exists a pull-back
morphism - -
f:CH (V) — CH'(X).
If f is proper, X,Y are equidimensional and fg : Xg — Y is smooth, there is a
push-forward morphism

— —p—§
£ CH'(X) = CH V),
where 0 = dim X — dim Y. Moreover, the projection formula holds.

Gillet and Soulé continued the project in [25] and [26] defining characteristic classes
for a hermitian vector bundle over an arithmetic variety X. In order to « define the
arithmetic Chern character “ch”, they introduced the arithmetic K- group, Ko (X), and
showed that “ch” gives an isomorphism between Ko(X )o and B> CH’ (X)q. Let us

briefly review the definition of Ko(X) and “ch”.



Let X be an arithmetic variety. A hermitian vector bundle E = (E,h) over X is a
locally free sheaf of finite rank on X together with a hermitian metric on the associated
holomorphic bundle. Let E be a hermitian vector bundle over X. Then, there is a Chern
character -

ch(E) e @ CH" (X)q
p=0
characterized by five properties: the functoriality, additivity, multiplicativity, compat-
ibility with the Chern forms properties and a normalization condition. Moreover, for
every exact sequence of hermitian vector bundles € : 0 — S — E — @Q — 0, the Chern
character satisfies ~
ch(E) = ch(S) + ch(Q) — (0, ch(e)),

where (:Nh(e) is the secondary Bott-Chern class of €. This leads to the following definition
of Ko(X). Let Ko(X) be the group generated by pairs (E, o), with o € D,>0 D21(X, p),
modulo the relation

(S,0)) + (Q,a") = (E,d + o’ + ch(e)),
for every exact sequence € as above. This group fits in an exact sequence

Ky(X) & @ D* (X, p) = Ko(X) — Ko(X) — 0, (2)

p=>0

with p the Beilinson regulator (up to a constant factor).
Then, the Chern character induces an isomorphism

As in the algebraic situation, this isomorphism relies on the graded decomposition of
I?O(X) given by the Adams operations. That is, I?O(X) is endowed with a pre-A-ring
structure such that ch induces an isomorphism on the eigenspaces of I?O(X )o by the
Adams operations:
ch: Ko(X)¥) = CH" (X)q.

Gillet and Soulé, using the results of Bismut and his collaborators, proved an arith-
metic Grothendieck-Riemann-Roch theorem (see [27] and [22]). Another approach to the
Grothendieck-Riemann-Roch theorem is given by Faltings (see [19] and [20]).

Let Td denote the arithmetic Todd class of the tangent bundle over an arithmetic
variety, let X,Y be arithmetic varieties and let f : X — Y be a projective, flat morphism
of arithmetic varieties, which is smooth over the rational numbers. Then the arithmetic
Grothendieck-Riemann-Roch theorem states that there is a commutative diagram:

PN Td(X)-ch(")

@pZO C/'EP(X )Q

f*l |

~ Td(Y)-ch(- L
(Y)-ch() &, CH'(V)o.




In [13], Burgos gave an alternative definition of the arithmetic Chow groups. It
consists of considering a different space of Green forms associated with an algebraic
cycle, by using Deligne-Beilinson cohomology. For projective schemes, Burgos definition
of arithmetic Chow groups agrees with the one given by Gillet and Soulé.

Let us briefly review his definition. Let X be an arithmetic variety and consider
(Dig (X, p),dp) to be the Deligne complex of differential forms on the associated real
variety Xg with logarithmic singularities along infinity (see [16] or [13]). The cohomology
of this complex gives the Deligne-Beilinson cohomology groups of Xg, Hj(X,R(p)).
For any codimension p irreducible subvariety of X, consider also the Deligne-Beilinson
cohomology with supports in Z:

Hp,7(X;R(p)) = H"(s(Diog(X,p) = Digg(X \ Z,p)))-

There is an isomorphism

called the cycle class map.

Let Df;,, (X, p) denote the quotient of Dj)g (X, p) by the image of dp. Just as a remark,
at degree 2p — 1 the differential dp is —200 = (47i)dd®. A Green form for a codimension
p irreducible subvariety Z is an element (w, g) € D?{%(X ,p) D Dif’g*l(X \ Z,p), such that
w = dpg and

cl(2) = [(w,§)] € HY ,(X,R(p)).

Then, an arithmetic cycle is now a couple (Z, (w,g)), with (w, g) a Green form for Z.
The arithmetic Chow group of X, CH p(X ), is defined as the quotient of the free abelian
group generated by the arithmetic cycles by an equivalence relation given by the group
of arithmetic rational cycles.

The arithmetic Chow groups defined by Burgos satisfy the analogous properties
(i)-(iii) stated above for the arithmetic Chow group defined by Gillet and Soulé. In
particular, the exact sequence (1) is written as:

CHP'P(X) L D2Y(X,p) & CH'(X) & CHP(X) — 0. (3)

The Burgos definition of arithmetic Chow groups is the definition adopted in this
study.

Later on, in [14], Burgos, Kramer and Kiihn developed a formal theory of abstract
arithmetic Chow rings, where the role of fibers at infinity is played by a complex of
abelian groups that computes suitable cohomology theory. That is, the space of Green
forms can be replaced by complexes with different properties in order to obtain arithmetic
intersection theories enjoying suitable properties.

Higher arithmetic intersection theory. In a way, we could consider that the pro-
gram of Arakelov intersection theory in the degree zero case is accomplished. To go
further towards the goal of obtaining arithmetic analogues for the algebraic theories
established, we would like to give the formalism of a higher intersection theory for



arithmetic varieties. This should include the theory of higher arithmetic Chow groups,
CHp(X ,n), equipped with an intersection product, the definition of higher arithmetic

K-groups, K, (X), characteristic class maps and Riemann- Roch theorems.

It has been suggested by Deligne and Soulé (see [16], Remark 5.4 and [54] §I11.2.3.4)
that the extension to higher degrees of the arithmetic Ky-group should be by means of
extending the exact sequence (2) in order to obtain a long exact sequence

~

s K1 (X) & HE T 7HX R(p) S Rn(X) S Ko (X) — -+

s K (X)L DTN (X p) S Ko(X) S Ko(X) — 0.

log
The morphism p is the Beilinson regulator, that is, the Chern character taking values
in real Deligne-Beilinson cohomology. Hence, the Archimedean component of the higher
arithmetic K-groups should be handled by the Beilinson regulator:

p:Kn(X)g — P CH (X n)g — P HE (X, R(p)).
p=0 p=0
Analogously, higher arithmetic Chow groups may be defined in order to extend the
exact sequence (3) into a long exact sequence:

= CH'(X,n) & CHP(X,n) & H¥ (X, R(p)) & CH' (X,n—1) — ---

- CHP(X,1) & D27 (X, p) & CH'(X) & CHP(X) — 0.

The above long exact sequences can be obtained by considering the homotopy groups
of the homotopy fiber of a simplicial representative of the Beilinson regulator.

Higher arithmetic Chow groups. Using these ideas, if X is proper, the arith-
metic Chow groups have been extended in [30] by Goncharov.

Let "D*~*(X, p) be the Deligne complex of currents over X and let EP*(X)(p) be the
group of p-twisted differential forms of type (p,p). Denote by ’ ZSZP**(X ,p) the quotient
of "D?P~*(X, p) by the complex

-—=0—---—0— EPP(X)(p) — 0.

Let ZP(X, %) be the chain complex whose homology groups define CHP(X, ). Gon-
charov defined an explicit regulator morphism

Z°(X, %) 2 "D¥ (X, p).

The higher arithmetic Chow groups of a regular complex variety X are given by the
homology groups of the simple of the morphism P:

CH"(X,n) := Hy(s(P)).

For n = 0, these groups agree with the ones given by Gillet and Soulé. However, this
construction leaves the following questions open:



(1) Is the composition of the isomorphism Ky(X)g = @, CHP(X,n)q with the mor-
phism induced by P the Beilinson regulator?

(2) Can one define a product structure on €, ,, C/'?IP(X, n)?
(3) Are there well-defined pull-back morphisms?

The main obstacle when we try to answer these questions is that we have to deal with the
complex of currents, which does not behave well under pull-back or products. Moreover,
the techniques on the comparison of regulators apply to morphisms defined for the class
of quasi-projective varieties, which is not the case of P.

Higher arithmetic K-theory. The first contribution in the direction of providing
an explicit definition of higher arithmetic K-groups is the simplicial description of the
Beilinson regulator given by Burgos and Wang in [15]. Let X be a complex manifold.
Let Zé*(X ) be the complex of cubes of hermitian vector bundles on X. Its homology
groups with rational coefficients are the rational algebraic K-groups of X, i.e., there is
an isomorphism H,,(ZC,(X), Q) = K, (X)q (see [47]). In [15], Burgos and Wang defined
a chain morphism

ch: ZC.(X) — D DF (X, p).
p>0

Here, 5;10 “*(X,p) is a complex built of differential forms on X x (P!). It is quasi-
isomorphic to the Deligne complex of differential forms on X with logarithmic sin-
gularities, Dif’gf*(X ,p). Moreover, if X is compact, then there is an explicit inverse

quasi-isomorphism 75]}?,(X ,p) — D*(X,p) giving a morphism

ch: ZC.(X) — P D* (X, p).
p=>0

A result of Burgos and Wang shows that this morphism induces the Beilinson regulator
in cohomology with rational coefficients.

The idea of the construction of the morphism “ch” is the following. To every n-cube
E on X there is an associated locally free sheaf, tr,(E), on X x (P!)" which gives a
deformation of the initial n-cube E by split cubes. Then, if “ch” is the Chern form given
by the Weil formulae, ch(tr,(E)) is a differential form on D; o (X X (PY",p). T X s
compact, one can integrate this form along (P!)" against suitable differential forms 7,
obtaining a differential form on X.

Let S. (X)) be the Waldhausen simplicial set for algebraic K-theory of the category of
hermitian vector bundles on X and K.(-) the Dold-Puppe functor from chain complexes
to simplicial abelian groups. Then, the composition

K(Cub)
-

8. (x) rewies, i (25.(x)) KAZC.(X) < K. (@D D (X.p))

p=>0

is a simplicial representative of the Beilinson regulator.



Let ﬁ*(X,p) be the béte truncation of the complex D*(X,p) at degree greater than
or equal to 2p, and let

i 8.X) K (@D (X)),

p=>0

be the morphism induced by “ch”. Then, following the ideas of Deligne and Soulé, one
defines the higher arithmetic K-groups by

~

K, (X) = mp41(Homotopy fiber of VC(CTI)D

In this way, the desired long exact sequence extending (2) is obtained.

Observe that this definition of higher arithmetic K-groups treats the degree zero case
in a different way from the rest. That is, the role of the differential forms in the non-zero
degree groups is played only by those differential forms in the kernel of the differential
dp, whereas no restriction is imposed in the degree zero group.

In order to avoid this difference, Takeda, in [57], has given an alternative definition
of the higher arithmetic K-groups of X, by means of homotopy groups modified by the
representative of the Beilinson regulator “ch”. We denote these higher arithmetic K-
groups by IA(;{ (X). The main characteristic of these groups is that instead of extending
the exact sequence (2) to a long exact sequence, for every n there is an exact sequence

Ko (X) & @D 1(X,p) & KL(X) S Ko (X) =0,
p=0

analogous to the exact sequence for Ko(X).
The two definitions do not agree, but, as proved by Takeda in [57], they are related
by the characteristic class “ch”:

Kn(X) 2ean ker(ch : KX (X) — D*~(X, p)).



Overview of the results

The results of this thesis contribute to the program of developing a higher arithmetic
intersection theory. These results constitute chapters 3 and 5. Chapters 2 and 4 consist
of the preliminary results needed for chapters 3 and 5, in the area of homotopy theory
of simplicial sheaves and algebraic K-theory.

In chapter 3, we develop a higher intersection theory on arithmetic varieties, a la
Bloch. That is, we modify the higher Chow groups defined by Bloch by an explicit
construction of the Beilinson regulator in terms of algebraic cycles.

We construct a representative of the Beilinson regulator using the Deligne complex
of differential forms instead of the Deligne complex of currents. The regulator that we
obtain turns out to be a minor modification of the regulator described by Bloch in [8].

Next, we develop a theory of higher arithmetic Chow groups, C/’?IP(X ,n), for any
arithmetic variety X over a field. These groups are the homology groups of the simple
of a diagram of complexes which represents the Beilinson regulator. We prove that there
is a commutative and associative product structure on C/’?I*(X, %) = @p,n ﬁ{p(X, n),
compatible with the algebraic intersection product. Therefore, we provide an arithmetic
intersection product for arithmetic varieties over a field.

The advantages of our definition over Goncharov’s definition are the following: the
construction is valid for quasi-projective arithmetic varieties over a field, and not only
over projective varieties; we can prove that our regulator is the Beilinson regulator; the
groups we obtain are contravariant with respect to arbitrary maps; we can endow them
with a product structure. All these improvements are mainly due to the fact that we
avoid using the complex of currents.

The higher algebraic Chow groups defined by Bloch give a simple description of
the motivic cohomology groups for smooth algebraic varieties over a field. One should
view the higher arithmetic Chow groups as a simple description of a yet to be defined
arithmetic motivic cohomology theory, valid for arithmetic varieties over a field.

We next focused on the relation between the higher arithmetic Chow groups and
higher arithmetic K-theory. In order to follow the algebraic ideas, we should have a
decomposition of the groups I?n(X )o given by eigenspaces of Adams operations VAR
I?n(X)@ — I?n(X)Q. By the nature of the definition of I?n(X), either by considering the
homotopy fiber, or the modified homotopy groups of Takeda, it is apparently necessary
to have a description of the Adams operations in algebraic K-theory in terms of a chain
morphism, compatible with the representative of the Beilinson regulator “ch”.

In chapter 4, we obtain a chain morphism inducing Adams operations on higher
algebraic K-theory over the field of rational numbers. This definition is of combinatory
nature. This chain morphism is designed to commute with the Beilinson regulator “ch”
given by Burgos and Wang. Hence, one can appreciate that it has been strongly inspired
by the definition of the Beilinson regulator and follows the same logical pattern.

In chapter 5 it is shown that this chain morphism indeed commutes with the repre-
sentative of the Beilinson regulator “ch” and we use this fact to define Adams operations
on the rational higher arithmetic K-groups.



Further studies in this direction will focus on determining if the Adams operations
induce a graded decomposition K,(X)g = @B,>¢ Kn(X )g ) such that there is an iso-

morphism CH p(X ,n)Q = An(X )g ), as is the case in the algebraic setting. Notice that
the arithmetic analogues of the algebraic theories discussed here rely on an explicit
description of a certain morphism in the algebraic context. This is the case for the
Beilinson regulator, in order to define higher arithmetic K-groups or Chow groups, and
for the Adams operations, in order to define Adams operations on the higher arithmetic
K-groups. In our view, the main difficulty to prove that there is an isomorphism

., .
CH"(X,n)q = K (X))

is that, for the moment, there is no explicit representative of the algebraic analogue.

The development of this study required tools to compare morphisms from algebraic
K-groups to a suitable cohomology theory or to the K-groups themselves. Indeed, we
construct a chain morphism that is proved to induce the Beilinson regulator, and we
construct a chain morphism that is proved to induce the Adams operations on algebraic
K-theory. In chapter 2, we study these comparisons at a general level, providing theo-
rems giving sufficient conditions for two morphisms to agree. The theory underlying the
proofs is the homotopy theory of simplicial sheaves.

These theorems provide an alternative proof that the regulator defined by Burgos
and Wang in [15] induces the Beilinson regulator. Moreover, we prove that the Adams
operations defined by Grayson in [31] agree for any regular noetherian scheme of finite
Krull dimension with the Adams operations defined by Gillet and Soulé in [28]. In
particular, this implies that the Adams operations defined by Grayson satisfy the usual
identities of a A-ring, a fact that was left unproved in Grayson’s work.



Results

We now explain the structure of the work and detail the main results.

Chapter 1 is of a preliminary nature. We briefly give the background needed for
the understanding of the central work of the thesis. It also has the purpose of fixing the
notation and definitions that will be used frequently in the forthcoming chapters. In the
first section we discuss simplicial model categories, focusing on the category of simplicial
sets and on the cubical abelian groups. In the second section we fix the notation on
multi-indices, and discuss general facts on (co)chain complexes. We also discuss the
relationship between simplicial or cubical abelian groups and chain complexes. In the
third section we give the definition of algebraic K-theory in terms of the Quillen Q-
construction and the Waldhausen construction. We also introduce the chain complex of
cubes, which computes algebraic K-theory with rational coefficients and plays a central
role in the definition of the Adams operations. Finally, in the last section of this chapter,
we recall the definition of Deligne-Beilinson cohomology and state the main properties
used in the study.

In Chapter 2 we give theorems for the comparison of characteristic classes in al-
gebraic K-theory. For a class of maps, named weakly additive, we give a criterion to
decide whether two of them agree. All group morphisms induced by a map of simplicial
sheaves are in this class, but these are not the only ones.

As mentioned already, in [15], Burgos and Wang defined a variant of the Chern
character morphism from higher K-theory to real absolute Hodge cohomology,

ch: K,(X) — @Hipin(XaR(p)),

p=>0

for every smooth complex variety X. They proved that this morphism agrees with
the already defined Beilinson regulator map. The proof relies only on the properties
satisfied by the morphisms and by real absolute Hodge cohomology, and not on their
definition. Hence, it is reasonable to think that there may be an axiomatic theorem
for characteristic classes on higher K-theory. The proof of Burgos and Wang makes use
of the bisimplicial scheme B.P., introduced by Schechtman in [51]. This implies that a
delooping in K-theory is necessary and hence, the method only applies to maps inducing
group morphisms.

We use the techniques on the generalized cohomology theory described by Gillet and
Soulé in [28]. Roughly speaking, the idea is that any good enough map from K-theory to
K-theory or to a cohomology theory is characterized by its behavior over the K-groups
of the simplicial scheme B.GLy.

We give several characterization theorems. As a main consequence of these, we give
a characterization of the Adams and lambda operations on higher K-theory and of the
Chern character and Chern classes on a suitable cohomology theory.

More explicitly, let C be the big Zariski site over a noetherian finite dimensional
scheme S. Denote by B.G Ly/g the simplicial scheme B.GLy xz S and let Gr(N, k) be



the Grassmanian scheme over S. Let S.P be the Waldhausen simplicial sheaf computing
algebraic K-theory and let F. be a simplicial sheaf. Note that S.P is an H-space. Let
\Ilgs be the Adams operations on higher algebraic K-theory defined by Gillet and Soulé
in [28]. The two main consequences of our uniqueness theorem are the following.

Theorem 1 (Corollary 2.4.4). Let p: S’P — S.P be an H-space map in the homotopy
category of simplicial sheaves on C. If for some k > 1 there is a commutative square

Ko(Vect(B.GLy ) —— Ko(B.GLys)

v lv

K()(VeCt(B.GLN/S)) T) Ko(B.GLN/S),

then p agrees with the Adams operation \IIIE;S, for all schemes X over S.

Theorem 2 (Theorem 2.5.5). Let F* be a cochain complex of sheaves of abelian groups
i C. Let

SP — H K.(F()[24])
JEZ
be an H-space map in the homotopy category of simplicial sheaves on C. The induced
morphisms

Kn(X) = [[ HAR" (X, F(5))
JEZ
agree with the Chern character defined by Gillet in [21] for every scheme X, if and only
if, the induced map

Ko(X) = [T Han (X, 7*(5))
JEL
is the Chern character for X = Gr(N, k), for all N, k.

In particular:

» We prove that the Adams operations defined by Grayson in [31] agree with the
ones defined by Gillet and Soulé in [28], for all noetherian schemes of finite Krull
dimension. This implies that for this class of schemes, the operations defined by
Grayson satisfy the usual identities of a A-ring.

» We prove that the Adams operations defined in Chapter 4 agree with the ones
defined by Gillet and Soulé in [28], for all noetherian schemes of finite Krull di-
mension.

» We give an alternative proof that the morphism defined by Burgos and Wang in
[15] agrees with the Beilinson regulator.



Chapter 3 is devoted to the development of the theory of higher arithmetic Chow
groups for arithmetic varieties. Since the theory of higher algebraic Chow groups given
by Bloch, CHP(X,n), is only fully established for schemes over field, we have to restrict
ourselves to arithmetic varieties over a field.

Let X be a complex algebraic manifold and let Hj(X,R(p)) denote the Deligne-
Beilinson cohomology groups with real coefficients. For every p > 0, we define two
cochain complexes, Dy z, (X,p)o and D} (X, p)o, constructed out of differential forms on
X x (AY)™ with logarithmic singularities along infinity. The following isomorphisms are
satisfied:

H*™™(Dj z,(X,p)o) = CHP(X,n)g,
and

H"(Dy(X,p)o) = Hp(X,R(p)), for r < 2p.

We show that the complex D} ,(X,p)o enjoys the same properties as the complex

ZP(X,n)o defined by Bloch in [7] We actually use its cubical analog, defined by Levine

n [41], due to its suitability for describing the product structure on CH*(X, ). The

subindex 0 means the normalized chain complex associated to a cubical abelian group.
Moreover, there is a natural chain morphism

2p— P ~2p—
DA[:ZIT(Xa p)O - DAp *(X>p)0
which induces, after composition with the isomorphism

Kn(X)o = @ CHP(X,n)g

p=>0

described by Bloch in [7], the Beilinson requlator (Theorem 3.4.5):

Kn(X)g = P CHP(X,n)g & @D HY (X, R(p)).

p=>0 p=>0

An analogous construction using projective lines instead of affine lines can be devel-

oped. We define a chain complex, Dép Z_p* (X, p), analogous to the complex sz ;Z (X,p)o

and a chain complex ﬂﬁp “*(X,p), analogous to the complex Dip “*(X,p)o. We also
define a chain morphism
Dz (X,p) & D (X.p).

In this case, if X is proper, following the methods of Burgos and Wang in [15], section
6, integration along projective lines induces a chain morphism

DY (X,p) — D¥7*(X,p).
This gives a chain morphism

D!z (X,p) & D (X, p)



representing the Beilinson regulator. Observe that, when X is proper, this representative
has the advantage of having as target precisely the Deligne complex of differential forms
on X, and not a chain complex involving differential forms on X x (A!)". This is needed
in order to develop a theory of higher arithmetic Chow groups analogous to the higher

arithmetic K-theory developed by Takeda in [57].
In the second part of this chapter we use the morphism p to define the higher arith-

metic Chow group CH p(X ,n), for any arithmetic variety X over a field. The formalism
underlying our definition is the theory of diagrams of complexes and their associated
simple complexes, developed by Beilinson in [5]. That is, one considers the diagram of
chain complexes

HZ (X x A*,R D™ (X,p)o
21)()(7 *)o = / \ /
ZP( Dzipz:(X D)o

Then, the higher arithmetic Chow groups of X are given by the homology groups of
the simple of the diagram ZP(X, *)q:

CH"(X,n) := Hy(s(Z"(X, %)0)).
The following properties are shown:

» Theorem 3.6.11: Let @p(X ) denote the arithmetic Chow group defined by
Burgos. Then, there is a natural isomorphism

CH'(X) = CH"(X,0).
» Proposition 3.6.7: There is a long exact sequence
= CH'(X,n) & CHP(X,n) & H¥ (X, R(p)) & CH' (X,n — 1) —
- — CHP(X,1) & D27N(X,p)/imdp % CH'(X) & CHP(X) — 0.

» Proposition 3.6.15 (Pull-back): Let f : X — Y be a morphism between two
arithmetic varieties over a field. Then, there is a pull-back morphism

CH'(Y,n) L CH"(X,n),

for every p and n, compatible with the pull-back maps on the groups CHP(X,n)
and HZ"(X,R(p)).

» Corollary 3.6.19 (Homotopy invariance): Let m: X x A™ — X be the projection
on X. Then, the pull-back map

T C/'ﬁp(X,n) — C/'?IP(X x A n), n>1

is an isomorphism.



» Theorem 3.9.7 (Product): There exists a product on

CH (X,+) = @ CH'(X.n).
p=20,n20

which is associative, graded commutative with respect to the degree n and com-
mutative with respect to the degree p.

Finally, we briefly discuss an alternative approach for the definition of higher arith-
metic Chow groups, which follows the ideas of Takeda in [57], for the definition of the
higher arithmetic K-groups of a proper arithmetic variety. To this end, we use the
definition of the regulator by means of projective lines, restricting ourselves to proper
arithmetic varieties over a field.

The following two questions remain open:

> Do the groups constructed here agree with the definition of higher arithmetic Chow
groups of Goncharov?

> Can we extend the definition to arithmetic varieties over an arithmetic ring?

In Chapter 4, we construct a representative of the Adams operations on higher
algebraic K-theory. Let X be any scheme and let P(X) be the exact category of locally
free sheaves of finite rank on X. The algebraic K-groups of X, K, (X), are defined as
the Quillen K-groups of the category P(X).

These groups can be equipped with a A-ring structure. Then, the Adams operations
on each K, (X) are obtained from the A-operations by a polynomial formula on the -
operations. In the literature there are several definitions of the Adams operations on
the higher K-groups of a scheme X. By means of the homotopy theory of simplicial
sheaves (as recalled in chapter 2), Gillet and Soulé defined Adams operations for any
noetherian scheme of finite Krull dimension. Grayson, in [31], constructed a simplicial
map inducing Adams operations on the K-groups of any category endowed with a suitable
tensor product, symmetric power and exterior power. In particular, he constructed
Adams operations for the algebraic K-groups of any scheme X. Following the methods
of Schechtman in [51], Lecomte, in [40], defined Adams operations for the rational K-
theory of any scheme X equipped with an ample family of invertible sheaves. They are
induced by map in the homotopy category of infinite loop spectra.

Our aim is to construct an explicit chain morphism which induces the Adams oper-
ations on rational algebraic K-theory. It is our hope that this construction will improve
our understanding of the eigenvalue spaces for the Adams operations.

Consider the chain complex of cubes associated to the category P(X). McCarthy in
[47], showed that the homology groups of this complex, with rational coefficients, are
isomorphic to the rational algebraic K-groups of X (see section 1.3.3).

We first attempted to find a homological version of Grayson’s simplicial construction,
but this seems particularly difficult from the combinatorial point of view.



The current approach is based on a simplification obtained by using the transgressions
of cubes by affine or projective lines, at the price of having to reduce to regular noetherian
schemes. This was Burgos and Wang’s idea in [15], in order to define a chain morphism
representing Beilinson’s regulator.

In order to commute with the representative of the Beilinson regulator “ch”, the
desired morphism should be of the form

E s U*(tr,(E)),

with UF a description of the k-th Adams operation at the level of vector bundles. Un-
fortunately, for the known choices of ¥*, this map does not define a chain morphism.
The key obstruction is that while, for any two hermitian vector bundles E, F', we have
the equality

ch(E @ F) = ch(FE) + ch(F),

it is not true that for any two vector bundles F, F', we have the equality
UHE®F)=U%E)o v F).

It is true, however, at the level of Ky(X).
The root of the problem is that the map

E — tr,(E)

is not a chain morphism. However, adding to this map a collection of cubes which have
the property of being split in all directions, we obtain a chain morphism. The fact that
the added cubes are split in all directions implies that they are cancelled after applying
“ch”. Therefore, we will still have commutativity of U* with “ch”.

With this strategy, we first assign to a cube on X a collection of cubes defined either
on X x (P1)* or on X x (A!)*, which have the property of being split in all directions
(Proposition 4.3.17). These cubes are called split cubes. This gives a morphism which
we call the transgression morphism.

Then, by a purely combinatorial formula on the Adams operations of locally free
sheaves, we give a formula for the Adams operations on split cubes (Corollary 4.2.39).
The key point is to use Grayson’s idea of considering the secondary Euler characteristic
class of the Koszul complex associated to a locally free sheaf of finite rank.

The composition of the transgression morphism with the Adams operations for split
cubes gives a chain morphism representing the Adams operations for any regular noe-
therian scheme of finite Krull dimension (Theorem 4.4.2).

The two constructions, with projective lines or with affine lines, are completely anal-
ogous. One may choose the more suitable one in each particular case. For instance,
to define Adams operations on the K-groups of a regular ring R, one may consider the
definition with affine lines so as to remain in the category of affine schemes. On the
other hand, if for instance our category of schemes is the category of projective regular
schemes, then the construction with projective lines may be the appropriate one.



The main application of our construction of Adams operations is the definition of a
(pre)-A-ring structure on the rational arithmetic K-groups of an arithmetic variety X.

In Chapter 5, we give a pre-A-ring structure to both definitions of higher arithmetic
K-groups tensored by the rational numbers Q, K,(X)g and KI'(X)g. It is compatible
with the A-ring structure on the algebraic K-groups, K,(X), defined by Gillet and
Soulé in [28], and with the canonical A-ring structure on €p, D?P~*(X, p), given by the
graduation by p (see lemma 1.3.28). Moreover, for n = 0 we recover the A-ring structure

More concretely, we construct Adams operations
UF K (X)g — Kn(X)g, k>0,

which, since we have tensored by Q, induce A-operations on I?n(X )Q-

In order to deal with f(}[ (X)q, we introduce the modified homology groups, which
are the analogue in homology of the modified homotopy groups. Then, the homology
groups modified by “ch” give a homological description of I?H(X )o (Theorem 5.3.11).

In this chapter we show that the construction of Adams operations of chapter 4
commutes strictly with “ch” (Theorem 5.4.11), and we deduce the pre-A-ring structure
for I?n(X)Q and I?Z(X)@ (Corollary 5.4.14 and Corollary 5.4.16).

For the time being, we have not been able to prove that it is a A-ring.
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